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I. Introduction 

0 

a 

0 

a 

a 

a 

a 

The goa l s  of t h i s  p ro jec t  are t o  provide physical  i n s i g h t  i n t o  the  l o c a l  

s t r u c t u r e  of I o ' s  atmosphere, t he  manner by which gases  escape the  grav i ta -  

t i o n a l  w e l l  of t he  sa te l l i t e  and produce n e u t r a l  clouds i n  the  circumplanetary 

space,  t h e  na tu re  of eas t -wes t  and poss ib le  magnetic longi tude asymmetries i n  

the  plasma Torus, and the  s t a b i l i t y  or  v a r i a b i l i t y  of both the  n e u t r a l  gas 

clouds and t h e  plasma to rus  over a seve ra l  year  t i m e  period. These goals  are 

pursued i n  t h i s  AER/JPL co l l abora t ive  e f f o r t  by s tudying and modeling the  

spa t i a l  morphology, i n t e n s i t y ,  and space-time v a r i a b i l i t y  of t he  I o  sodium 

cloud as preserved i n  the  JPL  T a b l e  Mountain I o  sodium cloud da ta  set, the  

most complete of t he  I o  sodium cloud d a t a  sets cu r ren t ly  ava i l ab le .  This  d a t a  

set documents t h e  2-D s p a t i a l  morphology of t h e  D-line emission i n t e n s i t i e s  of 

t h e  cloud on t h e  sky plane as a func t ion  of both I o  geoce t r i c  phase angle  and 

t h e  magnetic longi tude of I o  i n  the  S y s t e m  I11 coordinate  frame over a t i m e  

per iod  from 1976 t o  1981. 

sodium cloud a t  AER provide the  key too l  f o r  e x t r a c t i n g  phys ica l  i n s i g h t s  from 

t h i s  d a t a  set. 

Highly developed and unique models f o r  t he  Io 

The complete JPL I o  sodium cloud d a t a  set is  composed of 1974-1979 
s p e c t r a l  d a t a ,  1981 s p e c t r a l  da t a ,  1976-1979 Region B/C image da ta ,  1981 

Region B/C image da ta ,  and 1981 Region A image da ta .  

was reviewed and assessed  i n  t h e  f i r s t  p r o j e c t  year ( see  the  1985 Annual 

Report). From t h i s  review, both t h e  q u a l i t y  and quan t i ty  of da t a  acquired i n  

1981 were i n  genera l  much supe r io r  t o  t h e  earlier observat ions.  Because of 

t h i s  f a c t ,  t he  primary emphasis of modeling a n a l y s i s  i n  t h i s  p ro jec t  has been 

d i r e c t e d  toward the  1981 da ta  set and, i n  p a r t i c u l a r ,  t o  t he  1981 Region B/C  

images. E f f o r t s  i n  t h e  second year  have t h e r e f o r e  focused pr imar i ly  on the  

1981 Region B/C image data .  

The complete da t a  set 

Progress  i n  the  second p r o j e c t  year can be divided i n t o  t h r e e  main 

a reas :  (1) d a t a  q u a l i t y  review f o r  t h e  1981 Region B/C images, ( 2 )  s e l e c t i o n  

and d a t a  processing of a subse t  of 1981 Region B/C images, and (3) phys ica l  - 
enhancement of t he  I o  sodium cloud model i n  p repa ra t ion  f o r  a t h i r d  year 

acalysis cf t he  data .  A major step i n  t h e  second a r e a  was the successfu l  

development and app l i ca t ion  of software a t  t h e  Multimission Image Processing 

Laboratory (MIPL) of J P L  t o  remove d i s t o r t i o n s  present  i n  the  br ightness  
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d i s t r i b u t i o n  of each image. Because the re  were s i g n i f i c a n t  and unavoidable 

de l ays  encountered i n  developing t h i s  image sof tware i n  t h e  p a s t  two yea r s ,  

t h e  p r o j e c t  was extended f o r  a t h i r d  year t o  provide t h e  necessary t i m e  t o  

ana lyze  t h e  processed image da ta .  

second year  progress  is divided i n t o  the  t h r e e  main areas noted above. 

The fol lowing more d e t a i l e d  d iscuss ion  of 
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11. Data Quality Review in the 1981 Region B/C Images 

Observa t iona l  parameters f o r  the 263 Region B/C images of t he  1981 JPL 

d a t a  acqui red  over 14 n igh t s  are summarized i n  numerical form i n  Table 1 and 

i n  g raph ica l  form i n  Figure 1. 

been processed only p re l imina r i ly  t o  remove background s igna l s .  

P r io r  t o  t h i s  p ro jec t  most of these  images had 

Images on May 

4, 5, 12, 13 and June 4 had undergone f u r t h e r  processing t o  remove t h e  

ins tumenta l  response func t ion  and t o  normalize t h e  image i n t e n s i t y .  Because 

of t h i s ,  t h e  110 images (42% of the  data  s e t )  acquired on May 4, 5, 12 and 13 

were chosen and thoroughly reviewed during t h e  f i r s t  p r o j e c t  year. As a 

r e s u l t  of t h i s  review, f u r t h e r  refinements i n  the  image processing of t hese  

d a t a  frames were inden t i f i ed .  The q u a l i t y  of t h e  remaining 153 images is  

reviewed he re  as a p r e r e q u i s i t e  f o r  s e l e c t i o n  of images i n  our model-data 

s t u d i e s  . 
The r e s u l t s  of t h i s  da t a  q u a l i t y  review are summarized i n  Table 2 and 

were compiled by manual inspec t ion  of photographical  products f o r  each image 

produced p r i o r  t o  t h i s  p r o j e c t  by the  Image Processing Laboratory of JPL. 

Most images are composed by adding three d a t a  frames, where each da ta  frame 

gene ra l ly  r ep resen t s  an exposure time of approximate t e n  minutes. 

a r e ,  however, composed of only one or  two d a t a  frames. The q u a l i t y  of t h e  

images is r a t e d  i n  t h e  r i g h t  hand column of Table  2 and qua l i fy ing  comments 

a r e  a l s o  ind ica t ed .  As can be seen,  almost a l l  of t he  images are of 

s u f f i c i e n t  q u a l i t y  t o  be valuable  i n  our a n a l y s i s  of t h i s  da t a  set. 

images s e l e c t e d  f o r  more d e t a i l e d  s t u d i e s  w i l l ,  as noted e a r l i e r ,  undergo 

f u r t h e r  image processing. 

Some images 

Those 

3 
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1981 IO SODIUM CLOUD DATA 
FROM TABLE MOUNTAIN OBSERVATORY 

-J i:" 
lo Geocentric Phase Angle 

Figure 1. Observing Parameters f o r  1981 Io Sodium Cloud Images. 
The angular coverage f o r  the Io geocentric  phase angle  and the System I11 
magnetic longitude of Io over which Region B/C images were recorded i n  the 
JPL Table Mountain Data Se t  i s  indicated f o r  a l l  14 nights  of observations.  

a 
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Table 2 
1981 Region B/C Images: D a t a  Quality Review 

Date (UT) UT S t a r t  UT End Frames Qual i ty  

March 25 - - - - 1  
1 

- - - - 1  
5: 11 8: 15 29 usab le  

'only r a w  d a t a  a v a i l a b l e ;  16 images wi th  most exposures 1 1/2 minutes,  
s i n c e  images were so c l o s e  t o  Jup i t e r ;  must add images f o r  u s e f u l  
r e s u l t s ;  images were heavi ly  masked i n  both east and w e s t  d i r e c t i o n s .  

A p r i l  5 5: 18 
5:25 
5:36 
5:48 
6:05 
6:24 
6:47 
7:04 
7:17 
7:26 
7 :40 

5:22 
5:32 
5:46 
6:03 
6:20 
6:44 
7:02 
7 : 14 
7:24 
7:36 
7:50 

18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 

2 P a r t  of forward cloud t runca ted  by mask. 

2 ma r g  i n a  1 
2 good 
2 good 
2 good 

good (some s a t u r a t i o n )  
good (some s a t u r a t i o n )  

2 good 
very good 
very good 
very good 
very good 

2 
2 

2 
2 
2 
2 

11 good 3 

5: 11 5: 28 14 good 3 

A p r i l  6 (one)  4:33 4:40 
3 
3 

4:42 4:52 12 good 
4:54 5:09 13 good 

5:30 5:50 15 good 
5:52 6:09 16 good 

3 
3 

(two) 6:38 6: 55 22 good3 
6:59 7:09 23 g0d54 
7:11 7:23 24 good3 s 
7:25 7:42 25 good3 s 
7:44 8:Ol 26 good3 9 

- 
'only raw da ta  ava i l ab le .  
4probably p a r t  of forward cloud truncated. 

6 

a 



Table 2 

(continued) a 
Date (UT) UT Star t  

April  28 

a 

0 

a 

a 

0 

0 

5two frames 
6two frames 
7two frames 

April  29 

a 

e 

0 

4:21 
4:37 
4:49 
5:03 
5: 15 
5:25 
5:36 
5:47 
5:58 
6:09 
6:31 
6:43 
6:54 
7:07 
7:07 
7:18 
7:28 
7:39 
7:49 
7:59 
8: 10 
8:20 
8:30 

UT End 

5:Ol 
5: 13 
5:24 
5:34 
5:45 
5:56 
6:07 
6: 18 
6:30 
6:40 
6:52 
7:03 
7:16 
7:27 
7:37 
7:46.5 
7:57.5 
8:07 
8: 18 
8:28 
8:38 
8:48 
8:58 

only with 9 minute gap 
only . 

Frames 

25-27 
26-28 
27-29 
28-30 
29-3 1 
30-32 
3 1-33 
32-34 
33-35 
34-36 
36, 385 
38, 3g6 
39,417 
41 ,426 
41-43 
42-44 
43-45 
44-46 
45-47 
46-48 
47-49 
48-50 
49-51 

i n  the  middle .  

with 1 minute gap i n  center .  

3:18 
3:26 
3:35 
3:48 
3:58 
4: 10 
4:22 
4:32 
4:44 
4:55 
5:06 
5:21 
5:33 

3:43 
3:57 
4:07 
4:19 
4:32 
4:42 
4:53 
5:05 
5: 16 
5:32 
5:43 
5:55 
6:08 

1-3 
2-4 
3-5 
4-6 
5-7 
6-8 
7-9 

8-10 
9-11 
10-12 
11-13 
12-14 
13-15 

Quality 

good 
very good 
very good 
very good 
very good 
very good 
very good 
very good 
very good 
e x c e l l e n t  
very good 
very good 
very good 
e x c e l l e n t  
e x c e l l e n t  
very good 
very good 
very good 
very good 
good 
good 
good 
good 

usable  
good 
good 
good 
very good 
very good 
very good 
very good 
very good 
very good 
very good 

very good 

8 

very good 9 

7 

a 



Table 2 

(continued) 

Date (UT) UT S t a r t  UT End Frames Qua 1 it y 

A p r i l  29 (cont.)  5:45 6:21 14-16 good 
5:57 6:32 15-17 good 
6:lO 6:42 16-18 good 
6:23 6:52 17-19 good 
6:33 7:02 18-20 good 
6:43 7: 14 19-21 good 
6:53 7:25 20-22 good 

'background l e v e l  increas ing .  
' l i t t l e  po r t ion  of forward cloud t runca ted  by mask. 

May 6 3:07 
3: 12 
3:18 
3:27 
3:37 
3:47 
3:58 
4:09 
4:22 
4:50 
4:50 
5:03 
5: 14 
5:25 
5:36 
5:48 
6:OO 
6:11 
6:22 
6:33 
6:44 
6:55 
7 :05 
7:18 
7:30 
7:41 
7:54 
- 

3:25 
3:36 
3:46 
3:57 
4:08 
4:20 
4:32(?) 
4:44 
5:Ol 
5: 12 
5:24 
5: 35 
5:47 
5:59 
6: 10 
6:20 
6:31 
6:43 
6:54 
7 :04 
7:14 
7:28 
7 :40 
7:52 
8:05 
8: 16 
8:26 - 

5-7 
6-8 
7-9 

8-10 
9-1 1 

10-12 
11-13 
12,  131° 
13, 151° 
15, 161° 
15-17 
16-18 
17-19 
18-20 
19-21 
20-22 
2 1-23 
22-24 
23-25 
24-26 
25-27 
26-28 
27-29 
28-30 
29-3 1 
30-32 
31-33 
32-34 

usable  ( t w i l i g h t )  
good 
good 
very good 
e x c e l l e n t  
e x c e l l e n t  
e x c e l l e n t  
good 
good 
good 
e x c e l l e n t  
e x c e l l e n t  
exce l l en t  
exce 1 l e n t  
exce l l en t  
e x c e l l e n t  
e x c e l l e n t  
e x c e l l e n t  
e x c e l l e n t  
e x c e l l e n t  
very good 
very good 
very good 
very good 
good 
good 
usable '  
no good 

lono s i g n a l  i n  frame 14. 
" Jup i t e r  c l o s e  t o  horizon. 

8 



Table 2 
(continued) 

Date (UT) 

June 4 

UT Start UT End Frames 

- - 12 - 
4:57 5:35 12-14 usable13 

13 5:09 5:47 13-15 usable 
5:24 6:OO 14-16 usable13 

12perhaps more images, but must examine date on tapes. 
13forward cloud may be partially truncated. 

marginal 14 
15 

June 5 (one) 3:38 4:05 5-7 
3:47 4: 18 6-8 good 

15 (two) 5:27 6:09 11-13 good 
5:40 6:25 12-14 good 

6:12 6:54 14-16 good 
6:26 7:07 15-17 good 

5: 56 6:39 13-15 good 

1410ts of background noise. 
5some background noise. 

rn 

rn 

Quality 

June 6 - 
4:08 
4:19 
4:30 
4:42 
4:54 
5:08 
5:24 

16possibly more images. 

June 14 3:38 
3:47 
3:56 
4:05 
4:17 
4:29 
4:41 
4:53 

4:41 
4:53 
5:05 
5:23 
5:42 
5:55 
6:07 

4:04 
4:15 
4:28 
4:40 
4:52 
5:05 
5: 19 
5:32 

9-1 1 
10-12 
11-13 
12-14 
13-15 
14-16 
15-17 

5-7 
6-8 
7-9 
8-10 
9-1 1 
10-12 
11-13 
12-14 

17signal to noise not very good 
18portion of forward cloud truncated by mask 

- 16 

very good 
very good 
very good 
very good 
very good 
very good 
very good 

usable17 9 l8 
18 good 

good 
good 
good 
good 
good 
good 

9 
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111. Data Processing Activities 

e 

e 

0 

e 

e 

0 

e 

e 

1. Data Cor re l a t ion  S tudies  
F ive  d a t a  c o r r e l a t i o n  s t u d i e s  a re  def ined  i n  Table 3 f o r  t h e  set of 1981 

Region B/C images. 

images based upon t h e i r  I o  geocent r ic  phase angle ,  41, and t h e i r  I o  System 111 

magnetic longi tude  ang le ,  $. The f i v e  c l a s s i f i c a t i o n s  are use fu l  i n  iden t i -  

f y i n g  and then s tudying the  e f f e c t s  of r a d i a t i o n  pressure ,  t he  atom source 

c h a r a c t e r i s t i c s ,  and the  plasma torus  sink c h a r a c t e r i s t i c s  on the  morphology 

of t h e  sodium cloud. Each c o r r e l a t i o n  s tudy  lists those images t h a t  are 

appropr i a t e  f o r  t he  def ined c l a s s i f i c a t i o n ,  regard less  of t he  image data- 

q u a l i t y  summarized i n  Table 2. Incorpora t ing  t h e  r e s u l t s  of Table 2 w i l l  then  

a i d  i n  s e l e c t i o n  and p r i o r i t i z a t i o n  of images t o  undergo f u r t h e r  image 

process ing  and then model-data ana lys i s .  

Each s tudy provides a d i f f e r e n t  c l a s s i f i c a t i o n  f o r  t hese  

The r e s u l t s  of t he  f i v e  da t a  c o r r e l a t i o n  s t u d i e s  of Table 3 are 

summarized i n  Tables 4-8, respec t ive ly .  From Table 4 ,  consecutive image 

s t u d i e s  are p o s s i b l e  on a l l  14 n igh t s ,  bu t  s h o r t  exposure times on March 25 

and ques t ionab le  da t a  q u a l i t y  on June 4 might e l imina te  these  two evenings 

( s e e  Table  2) .  

image sequence p a i r s  ( a l s o  s e e  Figure 1) which a l l  have good t o  exce l l en t  d a t a  

q u a l i t y .  I f  comparisons of these  image sequence p a i r s  i n d i c a t e  t h a t  t he  

sodium cloud and its i n t e r a c t i o n  w i t h  t he  plasma t o r u s  are s t a b l e  over a few 

month t i m e  i n t e r v a l ,  then the  procedure of comparing images of d i f f e r e n t  d a t e s  

i n  t h e  c o r r e l a t i o n  s t u d i e s  111, I V  and V w i l l  r epresent  a v a l i d  multi-faceted 

look a t  a common (al though pe r iod ica l ly  t i m e  dependent) cloud-torus s t a t e .  

From Table 6 ,  east-west image s t u d i e s  of t h e  cloud morphology may be 

undertaken and used t o  explore  t h e  nature  of east-west d i f f e rence  i n  the  

plasma t o r u s  a l s o  i d e n t i f i e d  by o p t i c a l  t o r u s  emissions (Morgan and Fer te l ,  

1984; Morgan, 1985) and by UV emission from t h e  I o  plasma to rus  (Sandel and 

Broadfoot, 1982; Shemansky and Sandel, 1982). From Table 7, System I11 

v a r i a t i o n s  i n  the  e l e c t r o n  p rope r t i e s  of t h e  plasma t o r u s  may be inves t iga t ed  

by comparison and a n a l y s i s  of images. From Table 8, t h e  e f f e c t s  of viewing 

angle  on t h e  cloud morphology may be inves t iga t ed .  The e f f e c t s  of system I11 

v a r i a t i o n  can a l s o  be i n v e s t i g a t e d  by comparing images f o r  somewhat s i m i l a r  

phase ang le s ,  and e x c e l l e n t  cases  e x i s t  f o r  $ i n  t he  range from about 160" t o  

310" ( see  Table 8 and Figure  1). 

From Table 5, cloud s t a b i l i t y  s t u d i e s  are a v a i l a b l e  f o r  t h r e e  

e 
10 



e 
Table 3 

1981 Region B/C Images: Five Correlation Studiest 

e 

0 

e 

I. Consecutive Image Study: +(t), y(t) 

11. Cloud Stability Study: (+I, 'PI) (02, Y2) 
image sequences separated by 32 days 

111. East/West Image Study: +w = + 180° 
only one image-sequence pair 

no image pairs 

many comparison images 

'E 'W 
= YE + 180" IW 

'E ' 'W 
IV. System I11 Variability Study: +1 = +*, Yl # Y2 

V. Io Phase Angle Variability Study: +1# +2, '41 = '42 

t+ = Io Geocentric Phase Angle 
'4 = Io System I11 Magnetic Longitude Angle 

e 

e 

e 

11 
e 
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Table 4 

1981 Region B/C Images: Correlation Study I 

Consecutive Image Study: + ( t ) ,  $ ( t )  

Image data suitable on a l l  14 nights 
e 

e 

1 .  

2. 

3. 

4. 

5. 

6. 
7. 
8. 

9. 

10 . 
11. 

March 25 

April 5 

April 6 

A p r i l  28 

April 29 

May 4 (June 5 )  

May 5 (June 6 )  

May 6 

May 12 

May 13 (June 14) 

June 4 

a 

12 



a 

Table 5 

1981 Region B/C Images: Correlation Study I1 

Three Image Sequence Pa irs  Su i tab le  

(May 5 ,  June 6 )  Io e a s t  of Jupiter  

(May 4 ,  June 5 )  I o  w e s t  of Jupi ter  

(May 13,  June 14) I o  w e s t  of Jupi ter  

a 
13 



e 

e 

a 

1. E a s t  Images 

+ E  

March 25 

May 12 

June 4 

May 5 

June 6 

A p r i l  28 

2.  West Images 

4 E  

Table 6 

1981 Region B/C Images: Correlation Study 111 

May 4 

June 5 (one) 

June  5 (two) 

May 13 

May 6 

A p r i l  6 (one) 

A p r i l  6 (two) 

June  14 

A p r i l  29 

East/West Image Study: OW = $E + 180' 

May 4 
May 4 ,  May 6,  May 13, June 5 (one, two) 

May 4 
Apr i l  29, May 4 ,  May 6 ,  May 13, June 5 (one, two) 

Apr i l  6 (one), A p r i l  29, May 4 ,  May 13, June 14 

A p r i l  6 (one)*, A p r i l  29, May 4 ,  May 6 ,  May 13,  

June 5 (two), June 14 

March 25, A p r i l  5, A p r i l  28, May 5, May 12, June  4 

May 5,  May 12 

A p r i l  5,  Apri l  28, May 5 ,  May 12 

A p r i l  5,  April  28, May 5, May 12, June 6 

A p r i l  5 ,  April  28, May 5, May 12,  June 6 

A p r i l  5,  April  28*, May 5, June 6 

no candidates 

Apr i l  5,  April  28, May 5 ,  June 6 

A p r i l  5 ,  April  28, May 5 ,  June 6 

*$E = $w i n  a d d i t i o n  

a 

14 
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Table 7 

1981 Region B/C Ilages: Correlation Study IV 

System I11 V a r i a b i l i t y  S tudyt :  ,$1 = 92, y1 # y2 

I o  West of J u p i t e r  J u p i t e r  

1 - 
26 
167 

58 
198 

72 
172 
212 

190 
23 1 

222 
263 

5 
219 
256 
294 

37 
251 
288 
288 

70 
283 
322 
322 

I o  East of 

0 6 
50 

60 

0 
250 

255 

Date 

June 4 
May 12 

Date .. Y 
May 13..102 
May 4..323 

June 4 
May 12 

May 13..118 
May 4..338 

June 5..338 

0 

65 June 4 
May 5 
May 12 

260 May 13..133 
May 4..353 0 

70 

80 

90 

May 5 
May 12 

270 June 5...25 
May 4...25 
May 6..128 
May 13..167 May 5 

May 12 
0 

280 

290 

May 6..157 
May 13..197 A p r i l  5 

A p r i l  28 
May 5 
May 12 

A p r i l  29..153 
May 6..190 
May 13..232 

June 14..232 
A p r i l  6(one) 299 

100 A p r i l  5 
A p r i l  28 

May 5 
June 6 

0 
300 

305 

A p r i l  29 . .185 
May 6..223 

110 A p r i l  5 
A p r i l  28 

May 5 
June 6 

A p r i l  29..202 
May 6. .238 

A p r i l  6(two) 350 

e 

3 10 A p r i l  6....4 
A p r i l  29..219 0 

t a n g l e s  Q and Q given i n  degrees  

15 
0 



e 

e 

0 

0 

e 

0 

0 

0 

e 

e 

P - 
0 

10 

20 

30 

40 

50 

60 

70 

110 

120 

130 

Table 8 

1981 Region B/C Images: Correlation Study V 

I o  Phase Angle V a r i a b i l i t y  S tudyt :  +1 f 02, JI1 = $2 

Date 

May 4 

A p r i l  l6(tw0) 

May 4 

A p r i l  6(two) 

June 4 

A p r i l  5 
May 4 

June 5(two) 

June 4 

A p r i l  5 
May 4 

June 4 
A p r i l  5 

June 4 
A p r i l  5 

June 4 
A p r i l  5 

June 4 

A p r i l  5 

May 13 
May 6 

May 13 
May 6 

A p r i l  29 

May 13 

May 6 
A p r i l  29 

d 
26 2 

309 

265 
312 

48 

94! 
268f 

268f 

51 

971 
271! 

54 
100 

57 
103 

60 

106 

63 

109 

253 
266 

256 
268 

280 

259 

271 
283 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

16 

P 

140 
- 

150 

160 

170 

180 

190 

Date .. I$ 
May 13 
May 6 

A p r i l  29 

May 12 

May 13 

May 6 

A p r i l  29 

May 12 

May 5 
May 13 

May 6 
Apr i l  29 

May 12 

May 5 
May 13 

May 6 

A p r i l  29 

May 12 
May 5 

May 13 

May 6 

A p r i l  29 

May 12 

May 5 
May 13 

May 6 

A p r i l  29 

262 
274 

286 

45 

26 5 

27 7 
28 9 

48 

60 

268 
280 
292 

51 

63 
27 1 

283 

295 

54 
66 

274 

286 

298 

57 

69 

27 7 

289 
30 1 



Table 8 

(cont hued) 

Y I - A 
60 

72 
280 

293 
304 

Date Date .. t$ 

I 2 50 

I 
I 
I 
I 

200 May 12 

May 5 

May 13 

May 6 

May 12 
May 5 

A p r i l  28 

May 4 
June 14 

75 
87 

99 

228 

295 

0 

Apr i l  29 

I 260 

I 
I 
I 

0 2 10 May 12 
May 5 

A p r i l  28 
May 4 

May 13 

63 
75 
87 
2 16 

28 3 
283 

296 
307 

May 12 
May 5 

Apr i l  28 
May 4 

78 

90 
102 

23 1 

I 270 I May 12 

May 5 

A p r i l  28 
May 4 

81 

94 

105 
234 

June 14 

May 6 
A p r i l  29 

I 280 I 
I 
I 

0 220 May 12 

May 5 
A p r i l  28 

May 4 

May 13 

66 
78 

90 
219 

286 

286 

299 
3 10 

March 25 

May 12 
June 6 

May 5 

Apr i l  28 

May 4 

26 
84 
96 

97 

108 

237 
June 14 

May 6 
A p r i l  29 290 

I 
I March 25 

May 12 
June 6 

May 5 
Apr i l  28 

May 4 

29 

87 

99 

100 

111 

240 

0 
230 May 12 

May 5 
A p r i l  28 

May 4 

May 13 

June 14 

May 6 

69 

81 
93 
222 

289 

289 
302 

300 
i 
I 
I 
I 

March 25 
May 12 

June 6 

May 5 

A p r i l  28 
May 4 

Apr i l  6(one) 

32 
90 

102 

103 

114) 
24 3 

2901 

0 240 May 12 
May 5 

A p r i l  28 
May 4 

72 

84 

96 
225 

292 
292 

305 

I 
I 
l 
17 

May 13 
June 14 

May 6 



0 

Y Date 

3 10 March 25 

June 6 

May 5 

April 28 

May 4 

- 

April 6(one) 

3 20 June 6 

May 5 
April 28 

May 4 
April 6(one) 

L 
36 

105 

106 

117) 

246 

294) 

108 

109 

1201 

249 

297f 

Table 8 

(continued) 

Y Date .. 4 - 
330 June 6 

May 4 

1 
1 
1 
1 
1 

June S(one) 

3 50 May 4 

April 6(two) 

tAngles 4 and JI given in degrees 

110 phase angles differ by approximately 180' 

111 

252 

252 

258 

306 

18 
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a 
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2. Development of Data Processing Software 

Data processing p r i o r i t i e s  defined f o r  t he  J P L  Table Mountain Io  Sodium 

cloud d a t a  a r e  summarized i n  Table 9. 

development of s p e c i a l  sof tware a t  MIPL. 

The f i r s t  and second p r i o r i t i e s  r equ i r e  

The development of sof tware f o r  removal of d i s t o r t i o n  i n  t h e  D2 and D1 

image d a t a  ( i tem 1 of Table 9)  was successfu l ly  completed i n  the  t h i r d  

q u a r t e r ,  This  completion marked a major milestone f o r  t h e  p r o j e c t  and w a s  by 

f a r  t he  most d i f f i c u l t  t a sk  of Table 9. 

s lower than i n i t i a l l y  expected, p a r t l y  because of i t s  complexity, but primary 

because of delays a t  MIPL beyond our cont ro l .  These delays were caused by two 

main f a c t o r s :  

ponding conversion of a l l  of t he  MIPL image processing sof tware)  t h a t  occurred 

i n  t h e  f i r s t  year and a half  of t h i s  p ro jec t ,  and (2 )  d i f f i c u l t i e s  i n  schedul- 

i n g  t i m e  of s u f f i c i e n t l y  sen io r  MIPL ana lys t s  f o r  a c t u a l  sof tware develop- 

ment. 

d a t a  r equ i r e s  i n t e r a c t i v e  ana lys t  i n t e rven t ion  f o r  each image processed. 

This  development had proceeded much 

( 1 )  major changes i n  t h e  MIPL computer hardware (and corres-  

The new image sof tware i s  q u i t e  complex, and i t s  a p p l i c a t i o n  t o  image 

The development of software t o  determine t h e  abso lu te  br ightness  c a l i -  

b r a t i o n  of an image ( i tem 2 of Table 9) w a s  i n i t i a t e d  near  t he  end of t he  

t h i r d  q u a r t e r  and completed i n  the  beginning of t he  f o u r t h  qua r t e r .  

procedure is  s t r a i g h t  forward and has been thus f a r  r e s t r i c t e d  t o  the  l-D s l i t  

d a t a  which is  s u f f i c i e n t  f o r  our c a l i b r a t i o n  process.  

The 

3. Appl ica t ion  of Data Processing Software 

The t h i r d  d a t a  processing p r i o r i t y  f o r  t h e  JPL Table Mountain I o  sodium 

cloud d a t a  i n  Table 9 is the  app l i ca t ion  of t h e  image and c a l i b r a t i o n  sof tware  

t o  images i n  p repa ra t ion  f o r  modeling ana lys i s .  This  a p p l i c a t i o n  began i n  t h e  

f o u r t h  q u a r t e r  a t  MIPL and was r e s t r i c t e d  t o  1981 Region B/C images data .  A t  

t h e  end of t h e  second p ro jec t  year ,  twenty-two of these  image have been 

completely processed and seve ra l  add i t iona l  images are i n  progress .  The 

twenty-two completed images are i d e n t i f i e d  i n  Table 10 i n  terms of t h e i r  

observa t ion  da te ,  i n t e g r a t i o n  s ta r t  and end times, and t h e i r  SIP tape  number 

p lus  t h e  I D  number of each frame t h a t  is co-added t o  produce the  image. The 

s tar t  and end values  of the  geocentr ic  I o  phase angle  and system 111 longi tude  

angle  of I o  a r e  a l s o  given i n  Table 10. The twenty-two images were s e l e c t e d  

t o  y i e l d  a u s e f u l  subse t  of images appropr ia te  f o r  t he  d a t a  c o r r e l a t i o n  

s t u d i e s  d iscussed  above. The absolu te  b r igh tness  c a l i b r a t i o n  f o r  each of t h e s e  

images and o t h e r s  cu r ren t ly  being processed a r e  expected t o  be a v a i l a b l e  e a r l y  

i n  t h e  t h i r d  p ro jec t  year.  

19 
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Table 9 

Data Processing Priorities 

1. Development of Image Processing Software to Remove Distortion in the 
Brightness Distribution of Images 

a. Implement improved background subtraction techniques for images. 

e 

0 

b. Improve techniques for removal of image distortion near Io 
produced by continuum light scattered by Io. 

2. Development of Software to Determine the Absolute Brightness Calibration 
of Images 

a. Analyze 1981 1-D slit data on Io's disk and Region A image data to 
establish an absolute brightness calibration for the 1981 data. 

b. Analyze 1976-79 1-D slit data on Io's disk to establish a 
brightness calibration for the 1976-79 data. 

0 

3 .  Application of Software to Prepare Images for Modeling Analysis 

a. Using improved techniques in 1 above, remove brightness morphology 
distortions in a selected subset of images. 

0 
b. Using the information in 2 above, absolutely calibrate this 

selected subset of images. 

0 

e 

0 
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IV. Modeling A c t i v i t i e s  

e 

0 

e 

1. Improvements f o r  t he  Io  Sodium Cloud Model 

The l i f e t i m e  desc r ip t ion  of sodium i n  the  p lane tary  magnetosphere has 

been improved i n  t h e  second yea r  t o  include the  o f f s e t  d ipo le  na tu re  of t he  

magnetic f i e l d  as w e l l  as t h e  e f f e c t s  of t he  east-west  e l e c t r i c  f i e l d  (Barbosa 

and Kivelson 1983; I p  and Goertz 1983). Inc lus ion  of t hese  f a c t o r s  i n  t h e  

l i f e t i m e  d e s c r i p t i o n  is important t o  model properly t h e  morphology of t he  

sodium cloud as discussed below. 

The o f f s e t  magnetic d ipo le  causes t h e  plasma t o r u s  cen te r  t o  be o f f s e t  

from t h e  c e n t e r  of J u p i t e r .  This  causes the  l i f e t i m e  of sodium a t  I o ' s  

p o s i t i o n  t o  have a s l i g h t  (but  t r u e )  system I11 modulation i n  add i t ion  t o  t h e  

system I11 o s c i l l a t i o n  caused by t h e  -7' tilt  between the  r o t a t i n g  c e n t r i f u g a l  

plasma p lane  and t h e  sa te l l i t e  o r b i t  plane. The l i f e t i m e  v a r i a t i o n s  due t o  

t h i s  o s c i l l a t i o n  were discussed e a r l i e r  ( s ee  t h i r d  progress  r epor t  of t he  

f i r s t  year ) .  

small compared t o  t h e  e f f e c t s  produced by the  o s c i l l a t i o n .  

w i l l  modify t h e  amount of sodium present  i n  t h e  cloud but  not  i ts  bas i c  

morphology. 

The l i f e t i m e  modulations due t o  t h e  d ipo le  o f f s e t  are r e l a t i v e l y  

These modulations 

The eas t -wes t  e l e c t r i c  f i e l d  has t h r e e  major e f f e c t s  on the  plasma 

p rope r t i e s :  

( 2 )  a decrease  i n  t h e  e l e c t r o n  temperature of a plasma volume element as i t  

moves from w e s t  t o  east of J u p i t e r ,  and (3) a decrease i n  the  e l e c t r o n  number 

d e n s i t y  of a plasma volume element as it moves from w e s t  t o  east of J u p i t e r .  

These t h r e e  e f f e c t s  provide a s i g n i f i c a n t l y  longer  l i f e t i m e  f o r  sodium atoms 

near  I o  when the  s a t e l l i t e  is  east of J u p i t e r  than when t h e  sa te l l i t e  is  west 

of J u p i t e r .  

e l e c t r o n  impact i on iza t ion )  provides  a n a t u r a l  explanat ion f o r  t h e  east-west 

i n t e n s i t y  asymmetry of t he  sodium cloud t h a t  w a s  i n i t i a l l y  discovered by 

Bergs t r a lh  (1975, 1977) and noted more r ecen t ly  ( i n  a more s p a t i a l l y  extended 

region about I o )  i n  the  JPL Table Mountain sodium cloud image da ta  (Goldberg, 

Garneau and LaVoie 1984). 

(1) a geometric s h i f t  of t h e  plasma to rus  cen te r  toward the  east, 

This  east-west  asymmetry i n  the  sodium l i f e t i m e  (because of 

22 
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2. Preparation for Modeling Analysis in the Third Year 

e 

In preparation for third year analysis of image data, model calculations 
have been performed at AER in the third and fourth quarters of this project 

year to examine the impact of the new lifetime description (discussed above) 

on the intensity and morphology of the sodium cloud. To describe the model 
and the nature of the space/time dependent lifetime on the cloud, two 

companion papers have been undertaken. The first paper entitled "A General 
Model for Io's Neutral Gas Clouds: Mathematical Description" is a general 
model-documentation paper. 

the Appendix. 

Cloud: 
model to the sodium cloud. The model calculations simulate the basic cloud 

morphology and the character of the east-west orbital and east-west intensity 
asymmetries for the sodium cloud that have been previously reported in the 

literature. The second paper is approximately 80% completed and will be 

finished in the third project year at which time these two companion papers 

This paper has been completed and is included in 
The second paper entitled "A General Model for Io's Neutral Gas 

Application to the Sodium Cloud" explicitly applies the general cloud 

will be jointly submitted for publication. 
more recent AER theoretical contributions to the understanding of the Io 
sodium cloud (Smyth 1979, 1983; Pilcher et al., 1984; Smyth and Combi 1983, 

1984, 1985) and provide a solid basis for the third year analysis. 

These publications will extend the 

23 



e 
V. References 

e 

0 

a 

e 

e 

Barbosa, D.D., and Kivelson, M.G. (1983) Dawn-Dusk Electric Field Asymmetry 
of the Io Plasma Torus. Geophys, Res. Lett., 10, 210. 

Bergstralh, J.T., Matson, D.L., and Johnson, T.V. (1975) Sodium D-Line 
Emission from Io: Synoptic Observations from Table Mountain 
Observatory. Ap. J. Lett., 195, 131. 

Bergstralh, J.T., Young, J.W., Matson, D.L., and Johnson, T.V. (1977) Sodium 
A Second Year of Synoptic Observation from Table 

Ap. J. Lett., 211, L51. 
D-Line Emission from Io: 
Mountain Observatory. 

Goldberg, B.A., Garneau, G.W., and LaVoie, S.K. (1984) Io's Sodium Cloud. 
Science, 226, 512. 

Ip, W.-H., and Goertz, C.K. (1983) An Interpretation of the Dawn-Dusk 
Asymmetry of UV Emission from the Io Plasma Torus. Nature, 302, 232. 

Pilcher, C.B., Smyth, W.H., Combi, M.R., and Fertel, J.H. (1984) Io's Sodium 
Directional Features: Direct Evidence for a Magnetospheric-Wind-Driven 
Gas Escape Mechanism. Ap.J., 287, 427 

Smyth, W.H. (1979) Io's Sodium Cloud: Explanation of the East-West 
Asymmetries. AJ. -., J - 234, 1148. 

Smyth, W.H. (1983) Io's Sodium Cloud: Explanation of the East-West 
Asymmetries. 11. &. L., 264, 708. 

Smyth, W.H. and Combi, M.R. (1983) Io's Sodium Cloud: A Model for its 
Interaction with the Plasma Torus. BAAS, 15, 810. 

Smyth, W.H. and Combi, M.R. (1984) Understanding the Escape of Material from 
Io and its Role in the Planetary Magnetosphere. BAAS, 16, 663. 

e 

e 

e 

Smyth, W.H. and Combi, M.R. (1985) Correlating East-West Asymmentries in the 
Jovian Magnetosphere and the Io Sodium Cloud. BAAS, l7, 695. 

24 



e 

e 

e 

e 

e 

e 

APPENDIX 

A GENERAL MODEL FOR IO'S NEUTRAL GAS CLOUD: 

MATHEMATICAL DESCRIPTION 

25 

e 



0 

a 

a 

0 

0 

0 

0 

e 

A General Model for Io's Neutral Gas Clouds: 

Mathematical Description 

W e  He Siiiyth 

M. R. Combi 

Atmospheric and Environmental Research, Inc. 

840 Memorial Drive, Cambridge, Massachusetts 

[PRELIMINARY DRAFT] 
0 

0 



ABSTRACT 

- 

A g e n e r a l  mathematjcal formalism f o r  c a l c u l a t i n g  t h e  phys ica l  p r o p e r t i e s  0 
of any of Io ' s  n e u t r a l  gas  clouds (Na, K, 0, S, S O 2 )  i s  presented. 
dynamjcal e f f e c t s  of both t h e  g r a v i t a t i o n a l  f i e l d s  of Io and J u p i t e r  and of 

s o l a r  r a d i a t i o n  p r e s s u r e  a r e  included i n  a d d i t i o n  t o  t h e  many complex space  

and t i m e  dependent i n t e r a c t i o n s  t h a t  occur between t h e  n e u t r a l  c louds  and t h e  

plasma to rus .  

dependent i n t e r a c t i o n s .  The importance of t h i s  new model i n  s tudying  both t h e  

The 

0 
E a r l i e r  models have not included t h e s e  complex space  and t i m e  

plasma cond i t ions  p reva len t  i n  t h e  i n n e r  p l ane ta ry  magnetosphere and t h e  

n a t u r e  of Io's l o c a l  atmosphere i s  discussed. A numerical method f o r  

e v a l u a t i n g  t h e  p h y s i c a l  p r o p e r t i e s  of The n e u t r a l  c louds  has been developed 

and is  descr ibed .  

t o  a s tudy  of t h e  Io  sodium cloud i n  a companion paper j n  t h i s  i s s u e .  

The mathematical formalism and numerical method a re  a p p l i e d  

1 



1. Introductioa 

During t h e  pas t  two decades,  Io ,  t h e  innermost of t h e  fou r  Ga l i l ean  

s a t e l l i t - e s  of J u p i t e r ,  and i t s  profound in f luence  on t h e  p l ane ta ry  magneto- 

sphere  have been one of t h e  most e x c i t i n g  and i n t e n s e l y  s t u d i e d  s u b j e c t s  i n  

t h e  s o l a r  system. 

plex i n t e r a c t i v e  system was introduced by Bigg (1964),  who d iscovered  t h a t  

some of t h e  decametric r a d i o  emission of J u p i t e r  was d i r e c t l y  in f luenced  by 

t h e  s a t e l l i t e ' s  o r b i t a l  and magnetic l o c a t i o n  about t h e  p l ane t .  S ince  then ,  a 

l a r g e  information base  has been accumulated from ground-based obse rva t ions ,  

rocke t  measurements, ea r th -o rb i t i ng  s a t e l l i t e s ,  and f o u r  s p a c e c r a f t  encounters  

with J u p i t e r :  Pioneer 10 ( 4  December 1973), Pioneer 11 ( 2  December 1974) ,  

Voyager 1 ( 5  March 1979),  and Voyager 2 ( 9  J u l y  1979). 

The f i r s t  evidence t h a t  J u p i t e r  and Io  c o n s t i t u t e d  a com- 

, 
From ensuing s t u d i e s  of t h i s  information base,  a p i c t u r e  f o r  t h e  Io- 

J u p i t e r  system i s  emerging and slowly coming i n t o  focus. To has a l o c a l  atmo- 

sphe re ,  a l though i t  is n o t  w e l l  cha rac t e r i zed  o r  s t r u c t u r a l l y  understood. Io  

has  extended n e u t r a l  atmospheres o r  clouds t h a t  ex3 s t  l a r g e  d i s t a n c e s  beyond 

t h e  g r a v i t a t i o n a l  g r a s p  of t h e  s a t e l l i t e  and f i l l  p a r t i a l  o r  somewhat incom- 

p l e t e  toroidal-shaped volumes around J u p i t e r .  These c louds  occupy an overlap- 

ping volume with t h e  I o  plasma t o r u s  - t h e  most dense p a r t  of t h e  p l a n e t a r y  

magnetosphere - and i n t e r a c t  with i t  through c o l l i s i o n a l  processes  inc lud ing  

i o n i z a t i o n  and charge exchange r eac t ions .  These i n t e r a c t i o n s  n o t  on ly  shape 

t h e  s p a t i a l  morphology of t h e  c louds  bu t  supply heavy i o n s  t o  t h e  t o r u s  and 

a f f e c t  t h e  composition, s t r u c t u r e ,  and energy budget of t h e  plasma t o r u s  and 

i t s  ex tens ion  i n t o  t h e  l a r g e r  magnetosphere. The primary heavy i o n s  t h a t  com- 

pose t h e  c o r o t a t i n g  (or n e a r l y  c o r o t a t i n g )  plasma t o r u s  a r e  known t o  be oxygen 

(O+, 0") and s u l f u r  ( S + ,  S++,  S + + + ) ,  although t h e  r e l a t i v e  abundances of 

t h e s e  i o n s  throughout t h e  t o r u s  volume (even f o r  a two-dimensional longi  tudin- 
aI1y-aw.n- vsragGu p i c t u r e )  are s t S l l  n o t  w e l l  e s t ab l i shed .  IC and its l o c a l  atme- 

sphere  a l s o  i n t e r a c t  with t h e  c o r o t a t i n g  plasma t o r u s  and p l ane ta ry  magnetic 

f i e l d  i n  ways t h a t  are y e t  t o  be f u l l y  understood. Some of t h e s e  i n t e r a c t i o n s  

almost c e r t a i n l y  provide  i o n s  and energy d i r e c t l y  t o  t h e  plasma t o r u s  a s  w e l l  

a s  d r i v e  escape  mechanisms f o r  gases  i n  t h e  l o c a l  atmosphere. 

For purposes of t h i s  paper,  a b r i e f  review of Io ' s  l o c a l  and extended 

atmospheres and t h e i r  r e l e v a n t  i n t e r a c t i o n s  with t h e  plasma t o r u s  w i l l  be  

given i n  s e c t i o n  2. This  w i l l  provide necessary  information f o r  understanding 

t h e  evo lu t ion  and motivation f o r  developing t h e  new g e n e r a l  n e u t r a l  gas  cloud 

I 
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model p re sen ted  i n  s e c t i o n s  3 and 4. 
found i n  s e v e r a l  e x c e l l e n t  review ar t ic les  (Nash e t  a l .  1986; Brown, P i l c h e r  

and S t r o b e l  1983; Fanale e t  a l .  1982, 1977; Kumar and Hunten 1982; P i l c h e r  and 

A more complete d i scuss ion  of I o  may be 

a 
St robe1  1982; Brown and Yung 1976.).. The paper concludes wi th  a b r i e f  summary 

a 

i n  S e c t i o n  5. 
paper (Smyth and Combi 1986) i n  t h i s  i s sue .  I n  a series of f u t u r e  papers,  t h e  

new model w i l l  a l s o  be app l i ed  t o  o the r  n e u t r a l  clouds of I o  (K,  0, S ,  SO;). 

The new model is  appl ied  t o  t h e  sodium cloud i n  a companion 

a 
I 

a 

a 

e 

a 

3 
a 



2. Historical Perspective 

I 

Our understanding of I o ' s  l o c a l  atmosphere, although f a r  from complete, 

has  grown s t e a d i l y  s i n c e  1964, when Binder and Cruikshank (1964) r epor t ed  an 

anomalous br ighten ing  of t h e  s a t e l l i t e ' s  s u r f a c e  a s  i t  emerged from eclipse.  

This post-eclipse b r igh ten ing  suggested a dynamic and v o l a t i l e  atmosphere 

f o r  Io ,  f o r  which i n  1971 an upper l i m i t  s u r f a c e  p re s su re  of approximately 

b a r s  was deduced by Smith and Smith (1972) from o c c u l t a t i o n  of t h e  s t a r  

8 S c o r p i i  by the  s a t e l l i t e .  In  t h e  summer of 1972, t h e  d iscovery  by Brown 

(1974) of sodium o p t i c a l  emission from I o ' s  v i c i n i t y  and t h e  subsequent obser- 

v a t i o n s  i n  1973 by T ra f ton ,  Parkinson and Macy (1974) of an extended sodium 

cloud w e l l  beyond t h e  g r a v i t a t i o n a l  reach of Io  confirmed t h e  presence of a 

l o c a l  atmospheFe. 

obse rva t ions  of t he  sodium cloud t h a t  have continued over t h e  i n t e r v e n i n g  

fou r t een  years.  An ionsophere f o r  Io discovered from ana lyses  of Pioneer 10 

S-band r a d i o  o c c u l t a t i o n  da ta  (Ki lo re  e t  a l .  1974) provided a d d i t i o n a l  

information t o  c h a r a c t e r i z e  t h e  s a t e l l i t e ' s  l o c a l  atmosphere and i t s  p o s s i b l e  

i n t e r a c t i o n s  with the Jovian magnetosphere (C lou t i e r  e t  a l .  1978). A quantum 

l e a p  forward i n  understanding I o ' s  l o c a l  atmosphere was obtained by t h e  

Voyager 1 s p a c e c r a f t ' s  d i scovery  of a c t i v e  vo lcan ic  plumes (Morabito et  a l .  

1979) and de tec t ion  of SO2 gas  (- 

h o t  s p o t s  on I o  ( P e a r l  et a l .  1979). 

c o n s t i t u e n t  of the atmosphere (Kumar 1979), t h e  v e r t i c a l  s t r u c t u r e ,  g l o b a l  

e x t e n t  and su r face  d e n s i t y  v a r i a t i o n s  of t h e  atmosphere s t i l l  remain u n c e r t a i n  

even a f t e r  much t h e o r e t i c a l  a n a l y s i s  (Kumar 1980, 1982, 1984, 1985; Summers 

1984; Matson and Nash 1983). I n s i g h t f u l  information f o r  t h e  d e n s i t y  of sodium 

i n  I o ' s  l o c a l  atmosphere is t o  be expected i n  t h e  nea r  f u t u r e ,  however, upon 

a n a l y s i s  of novel earth-based observa t ions  r e c e n t l y  presented by Schneider 

e t  a i .  (1985) of abso rp t ion  s i g n a t u r e s  ai t h e  sodium D-line wavelengths of 

r e f l e c t e d  sun l igh t  from Europa a s  i t  was e c l i p s e d  by Io. 

Th i s  d i scovery  a l s o  sparked a l a r g e  number of earth-based 

b a r s  s u r f a c e  p re s su re )  over one of many 

Although SO2 now appears  t o  be  t h e  major 

The discovery of t h e  I o  sodium cloud marked t h e  f i r s t  of f o u r  extended 

atmosphere9 t h a t  have been de tec t ed  t o  d a t e  for t he  s a t e l l i t e  a s  summarized i n  

Table 1. The three more r e c e n t l y  de t ec t ed  n e u t r a l  c louds  f o r  I o  a r e  potassium 

i n  1975 and atomic oxygen i n  1980, both from ground-based obse rva t ions  of 

o p t i c a l  l i n e s ,  and atomic s u l f u r  i n  1981 from rocket-borne ins t ruments  

measuring u l t r a v i o l e t  emissions.  

because of t h e  presence of a small amount of SO2+ i o n s  measured i n  t h e  plasma 
A f i f t h  cloud of n e u t r a l  SO2 is  expec ted ,  

4 

4 

4 

4 

- 
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0 

0 

0 

t o r u s  (Bagenal and Su l l ivan  1981; Bagenal 19851, b u t  h a s  n o t  been de tec t ed  

d i r e c t l y .  For sodium, more than 1000 obse rva t ions  of i t s  s p a t i a l  b r i g h t n e s s  

have been made i n  t h e  l a s t  14 yea r s ,  with most-& t h e  e a r l i e r  measurements 

p rov id ing  only  s l j  t-averaged i n t e n s i t y  v a l u e s  and most of t h e  more r e c e n t  

measurements provid ing  i n c r e a s i n g l y  hlgher-quali t y  two-djmensional image 

da ta .  For t h e  dimmer potassium cloud (- 1/20 t h e  b r i g h t n e s s  of t h e  sodium 

c l o u d ) ,  about  200 s l i t -averaged  observa t ions  have been made almost e n t i r e l y  by 

Tra f ton  (1975, 1981), who presented a survey of t h i s  gas  cloud t h a t  e x h i b i t e d  

s p a t i a l  and temporal v a r i a t i o n s  s i m i l a r  t o  t hose  documented f o r  t h e  Io  sodium 

cloud. For t h e  much dimmer atomic oxygen and atomic s u l f u r  c louds ,  on ly  a 

ve ry  few s l i t - ave raged  de tec t ion  observa t ions  have been acqui red .  

The presence of n e u t r a l  clouds fo r  Io  provides  a l a r g e l y  unexplored but  

r i c h  p o t e n t i a l  f o r  s tudying  both t h e  plasma cond i t ions  p reva len t  i n  t h e  jnne r  

p l a n e t a r y  magnetosphere and t h e  na tu re  of Io ' s  l o c a l  atmosphere. Sodium i s  by 

f a r  t h e  b e s t  n e u t r a l  cloud t o  use  a s  a probe f o r  t h e s e  purposes,  because i t  is 

t h e  b r i g h t e s t  and most ex tens ive ly  observed and is  ( t o g e t h e r  wi th  potassium) 

s e n s i t j v e  t o  s p a t i a l  and temporal changes i n  t h e  plasma t o r u s  due t o  i t s  small 

e l e c t r o n  impact i o n i z a t i o n  l i f e t i m e  (- 1-2 hours )  n e a r  Io's o r b i t .  Ear ly  ob- 

s e r v a t i o n s  acqui red  i n  1973 and 1974 (i .e. ,  pre- and post-Pioneer 1 G )  by Macy 

and Traf ton  (1975 a ,b )  and MUnch and Bergs t ra lh  (1977), f o r  example, f i r s t  

sugges ted  t h e  presence of a magnetospheric s i n k  f o r  sodium n e a r  Io ' s  o r b i t  

t h a t  was both r a d i a l l y  asymmetric and o s c i l l a t o r y .  The r a d i a l  asymmetry was 

sugges ted  by t h e  presence of a predominatly forward sodium c loud ,  and t h e  

o s c i l l a t o r y  n a t u r e  w a s  suggested by t i m e  dependent changes i n  t h e  sodium 

b r i g h t n e s s  no r th  and south of t h e  s a t e l l i t e  t h a t  were c o r r e l a t e d  with t h e  

s a t e l l i t e ' s  magnetic l a t i t u d e  (Trafton and Macy 1975; Traf ton  1980). As w i l l  

be  shown i n  t h e  companion paper i n  t h i s  i s s u e ,  t h e  predominantly forward cloud 

is  indeed n a t u r a l l y  produced by t h e  r a d i a l  asymmetry of t h e  plasma t o r u s  f o r  

sodium e j e c t e d  from Io  a t  r e l a t i v e l y  slow speeds (- 3 km sec-l) a s  f i r s t  sug- 

g e s t e d  from t h e s e  e a r l y  observa t ions .  

by magnetospheric i ons  both d i r e c t l y  through s c a t t e r i n g  of n e u t r a l s  from t h e  

l o c a l  atmosphere ( o r  su r face ,  i f  regions of low d e n s i t y  e x i s t )  a s  d i scussed  i n  

a number of papers (Sieveka and Johnson 1984; Cheng 1984; L a n z e r o t t i  and Brown 

i983; Brown, P i l c h e r  and S t r o b e l  1983; I p  1982; Matson, Johnson and Fanale 

1974), and i n d i r e c t l y  through m u l t i c o l l j  s j o n a l  processes  r e s u l t i n g  i n  atmo- 

s p h e r i c  s p u t t e r i n g  (Summers, Yung and Haff 1983; Haff,  Watson and Yung 1981; 

These slow speed atoms may be energ ized  
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McGrath and Johnson 1986) o r  blowoff (Hunten 1985). More r ecen t  obse rva t jons  

of t h e  sodium cloud have shown, f o r  example, (1) well-defined s p a t i a l  zones 

t h a t  become temporally d e f i c i ~ e n t  of atoms, due perhaps t o  l o c a l l y  ( l i k e l y  

System 111) enhanced ion iza t ion  (Gdldberg, Garneau, and LaVoie 1984), ( 2 )  

d i r e c t i o n a l  f e a t u r e s  produced by hggh-veiocity (- 20 km sec-l) sodium dr iven  

e l a s t i c a l l y  by the  magnetospheric wind from t h e  l o c a l  atmosphere a t  n e a r  r i g h t  

ang le s  t o  Io ' s  o r b i t  and p r e f e r e n t i a l l y  from t h e  e q u a t o r i a l  reg ions  ( P i l c h e r  

e t  a l .  1984), and ( 3 )  very f a s t  (A 60 km sec-') narrowly-collimated j e t s  of 

sodium dr iven  d i r e c t l y  ahead of t h e  s a t e l l i  t e  by charge exchange r e a c t i o n s  

with t h e  plasma t o r u s  (Trauger 1984, 1985). Although t h e  oxygen and s u l f u r  

c louds  a r e  only  b r i g h t  enough t o  be b a r e l y  d e t e c t e d ,  phys ica l  i n s i g h t  acqui red  

f o r  t h e  b r i g h t  sodium cloud may be adopted where appropr i a t e  i n  01, S I  and SO2 
cloud models. These atomic and molecular c loud  models so  cons t ruc tued  then 

become enhanced t o o l s  themselves t o  de te rmine  ion loading r a t e s ,  plasma mass 

loading  r a t e s ,  and ion energy i n p u t  r a t e s  t o  t h e  plasma t o r u s  a s  w e l l  a s  t o  

s p e c i f y  t h e  cha rac t e r  and source  r a t e  of n e u t r a l  gases  escaping from I o ' s  

l o c a l  atmosphere (Smyth and Shemansky 1983). 

Models f o r  t h e  n e u t r a l  c louds  of Io  a r e  e s s e n t i a l  i n  probing and 

recover ing  phys ica l  information from s p a t i a l  b r igh tness  observa t ions  of Io 's  

extended atmospheres and r e l a t i n g  t h i s  information t o  cond i t ions  i n  Io ' s  l o c a l  

atmosphere and t h e  p l ane ta ry  magnetosphere. The development of cloud models 

f o r  I o  was h i s t o r i c a l l y  i n i t i a t e d  f o r  t h e  sodium cloud i n  t h e  e a r l y  1970's and 

has  evolved during t h e  l a s t  decade with p rogres s ive ly  more complete descr ip-  

t i o n s  f o r  t h e  source,  l i f e t i m e ,  and o r b i t a l  dynamics of sodium atoms i n  t h e  

J u p i t e r  system. Only i n  t h e  l a s t  few yea r s  have models f o r  t h e  I o  oxygen and 

s u l f u r  c louds  (Smyth and Shemansky 1983) and t h e  I o  potassium cloud (Smyth and 

Combi 1984) been developed. A g e n e r a l  model, a p p r o p r i a t e  t o  any of t h e s e  neu- 

t r a l  gas  c louds  of I o ,  has now been formulated and i s  presented i n  Sec t ions  3 

and 4. 

4 
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3. Mathematical Descr ip t ioo  for  tihe Io Neut ra l  Gas Clouds 

e 

e 

e 

e 

e 

Mathematical Approach 

The b a s i c  mathematical approach is  liased upon t h e  conservation i n  phase 

space  of t h e  one-par t ic le  d i s t r i b u t i o n  func t ion  f (f ,z, t)  f o r  a gas  spec ie s .  

I n  b r i e f ,  i f  a t  an i n i t i a l  t i m e  t = t t h e  d i s t r i b u t i o n  func t jon  can be 
b 

s p e c i f i e d ,  then t h e  d i s t r i b u t i o n  func t jon  a t  a l a t e r  t i m e  may, under c e r t a i n  

c i rcumstances  of i n t e r e s t  he re ,  be simply r e l a t e d  t o  i ts  i n i t i a l  va lue  by 

p rope r ly  mapping i t s  t j m e  evolu t ion  in  phase space  and inc lud ing  processes  

t h a t  modify i t s  i n i t i a l  va lue  dur ing  t h i s  t i m e  evolu t ion .  This conserva t ion  

i n  phase space fo l lows  d i r e c t l y  from t h e  well-known L j o u v i l l e ' s  theorem f o r  an 

N-par t ic le  system upon i n t e g r a t i n g  over the s i x  phase-space coord ina te s  of N-1 
of t h e s e  p a r t i c l e s .  

The g e n e r a l  approach may be  formally understood a s  follows. The one- 

p a r t j c l e  d i s t r i b u t i o n  func t ion  i n  k i n e t i c  theory  has  t h e  phys ica l  meaning t h a t  

r e p r e s e n t s  t h e  (ensemble-average) number of atoms ( o r  molecules) a t  t i m e  t i n  

a s p a t i a l  volume e l e m e n t  dx about pos i t i on  .', with v e l o c i t i e s  d f  about f. 
t i m e  evo lu t ion  of t h e  one-par t ic le  d i s t r i b u t i o n  func t ion  is  governed by t h e  

k i n e t i c  equation 

+ The 

e 

e 

e 

e 

+ +  
where 3 ,  which may i n  gene ra l  depend on ( v , x , t ) ,  i s  t h e  f o r c e  experienced by 

t h e  gas  atoms ( o r  molecules) due t o  macroscopic i n t e r n a l  and e x t e r n a l  sources  

and m is t h e  mass of a gas atom ( o r  molecule). Furthermore, ( s f / & )  is  t h e  

l o c a l  r a t e  of change of f ( v , x , t )  due t o  processes  such a s  c o l l i s i o n s  t h a t  may 

add o r  remove t h e  (ensemble-average) number of atoms ( o r  molecules) from an 

element of phase space. For b ina ry  c o l l i s i o n s  i n  a g a s ,  f o r  example, one 

o b t a i n s  t h e  Boltzmann equatlon when t h e  right-hand s i d e  of t h e  k i n e t i c  

+ +  

equat ion  is represented  by t h e  Boltzmaan c o l l i s i o n  i n t e g r a l  (a a m l i n e a r  and 

j n t e g r a l  func t ion  of t h e  d i s t r i b u t i o n  func t ion ) .  
- + +  

The t i m e  evolu t ion  o r  t r a j e c t o r y  of a po in t  i n  phase space (v ,x )  = 

(S( t ) ,g ( t )>  t h a t  is i n i t i a l l y  ( t = t b )  a t  a p o i n t  (Cb,Zb> = ( i2 tb> ,Z( tb ) )  is  

- - -- 
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determined by so lv ing  t h e  equa t ions  of motion f o r  a gas atom ( o r  molecule) of 

mass m 

a 

a 
f o r  t h i s  i n i t i a l  va lue  problem. These equa t ions  of motion are by cons t ruc t ion  

t h e  c h a r a c t e r i s t i c  equat ions  of t h e  k i n e t i c  equat ion  s o  t h a t  t he  left-hand 

s i d e  of t h e  k i n e t i c  equat ion  is  t h e  t o t a l  t i m e  d e r i v a t i v e  of t h e  d i s t r i b u t i o n  

func t ion .  The k i n e t i c  equat ion  thus  reduces t o  

There e x i s t s  a class of p h y s i c a l  problems t o  which t h e  Io  gas clouds may 

be r e l a t e d  i n  which t h e  gas d e n s i t y  i s  s u f f i c i e n t l y  low t h a t  gas atoms ( o r  

molecules) along t h e i r  phase space t r a j e c t o r i e s  do not  c o l l i d e  wi th  each o t h e r  

but may c o l l i s i o n a l l y  i n t e r a c t  w i th  o t h e r  m a t e r i a l  (such as ions  and e l e c t r o n s  

i n  a r a r e f i e d  plasma) o r  photons (i.e., pho to ion iza t ion  o r  pho tod i s soc ia t ion  

processes)  so as t o  change t h e  i n i t i a l  ensemble-average number of atoms. I n  

t h i s  case, t h e  right-hand s i d e  of t h e  k i n e t i c  equat ion  is  l i n e a r  i n  t h e  

d i s t r i b u t i o n  func t ion  and may be expressed i n  t h e  gene ra l  form 

6f (E) = U f  + s , (5) 

+ +  
where v and S are independent of f but may depend i n  gene ra l  upon ( v , x , t ) .  

Here v is  an e f f e c t i v e  l o s s  rate and S is  an  e f f e c t i v e  source  rate f o r  t h e  

ensemble-average number of atoms i n  an element of phase space. Using 

express ion  (5) i n  ( 4 1 ,  t h e  k i n e t i c  equa t ion  can be e x p l i c i t l y  i n t e g r a t e d  a long  

t h e  phase space  t r a j e c t o r y  t o  determine t h e  d i s t r i b u t i o n  func t ion  a t  t i m e  t: 

a 

(I 

I 
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a 

Here 

a 

a 

e 

0 

e 

e 

is the probability that an ensemble-averaged number of gas atoms introduced at 
a time tl exist at a later time t2 because of the effective loss rate v. The 

distribution function at a time t > tb is then given by the initial distribu- 
tion function reduced by this probability plus all new source contributions to 

the initial distribution function that have occurred in the time interval tb 
to t with a proper decay loss included for these contributions. 

The description of the gas may therefore be constructed in terms of a 
$large number of phase space trajectories along which the ensemble-averaged 

number of atoms evolve in time based upon a set of initial conditions for the 
distribution function which properly simulate the boundary conditions of a 

particular physical problem, More specifically, the description of the gas 

can be fundamentally reduced to describing the time evolution of an ensemble 

packet of gas along its phase space trajectory. An ensemble packet is defined 
as the infinitesimal volume element containing the ensemble-average number of 

atoms that initially began its trip along the trajectory in the time interval 
tb to tb + dt. 
neutral gas clouds is described in the next subsection, 

The physics of an ensemble packet appropriate for the Io 

The basic principle of the general mathematical approach described above 

has been employed in planetary science to develop models for a number of 
studies involving collisionless or nearly collisionless atmospheres. The 

basic principle has been, in fact, used with increasing regularity in the last 
two decades. These studies have included cometary atmospheres, planetary 

atmospheres, and satellite atmospheres for which major references are given in 

Table 2. A more general review of exospheric theories is given by Fahr and 

Shizgal (1983). The studies for Io's neutral gas clouds are perhaps the most 
complex subset of these exospheric problems appropriate to the linear inter- 

action (5). This complexity results because of the inherent velocity, space, 
and time dependence of both the force F in the equations of motion and the 

effective loss rate v of neutrals in the plasma torus and also because of the 
form of the source term S which is described below. 

+ 

For the Io neutral gas cloud, the source term S in (5) is a spatially 
distributed source that describes the creation of secondary cloud atoms 

0 



I 

produced by i n t e r a c t i o n s  of t h e  magnetospheric plasma wi th  only  t h e  primary 

g a s  cloud atoms ( o r  molecules) i n i t i a l l y  e j e c t e d  from t h e  sa te l l i t e .  For 

atomic gas clouds, t he  d i s t r i b u t e d  source  is  caused p r i m a r i l y  by charge 

exchange r eac t ions  between the  extended cloud atoms and t h e  c o r o t a t i n g  p lasma 

, t o r u s  ions .  E l a s t i c  c o l l i s i o n s  between t h e s e  ions  and extended cloud atoms 

may a l s o  produce a con t r ibu t ion  t o  t h e  source  term i n  ( 5 )  but t h i s  cont r ibu-  

t i o n  is usua l ly  s i g n i f i c a n t l y  less important over t h e  r e l a t i v e  s h o r t  l i f e t i m e  

of t h e  cloud. Primary cloud atoms have v e l o c i t i e s  r e l a t i v e  t o  I o  t h a t  are 

g e n e r a l l y  slow compared t o  t h e  c o r o t a t i o n a l  i o n  speed (- 57 km sec ) and, 

when removed by t h e  atom-ion charge exchange r e a c t i o n s ,  create f a s t  secondary 

cloud atoms tha t  have a r a t h e r  t i g h t l y  confined v e l o c i t y  d i s p e r s i o n  centered  

-1  

, o n  t h e  c o r o t a t i o n a l  speed. The f a s t  secondary cloud atoms are thus  c rea t ed  i n  

a v e l o c i t y  volume of phase space t h a t  is g e n e r a l l y  d iscont inuous  wi th  v e l o c i t y  

volume of phase space conta in ing  t h e  slow primary cloud atoms. For molecular 

gas  clouds (e.g., SO2 o r  SO), electron-impact d i s s o c i a t i v e  r e a c t i o n s  very 

r a p i d l y  remove the  primary cloud molecules (Shemansky 1984) and create o t h e r  

secondary cloud atoms (o r  molecules) t h a t  i n i t i a l l y  may have a d d i t i o n a l  

amounts of k i n e t i c  energy as d i c t a t e d  by t h e  e n e r g e t i c s  of t h e  r eac t ion .  

Because of t h e  rap id  d i s s o c i a t i v e  l i f e t i m e  of molecules i n  t h e  plasma t o r u s ,  

t h e s e  d i s s o c i a t i v e  sources are l i k e l y  t o  be heav i ly  confined near  Io. A gas  

cloud of Io  f o r  t h e  j n e u t r a l  s p e c i e s  may t h e r e f o r e  be g e n e r a l l y  descr ibed  by 

a primary and a secondary popula t ion  of cloud atoms ( o r  molecules) by formal ly  

d i v i d i n g  t h e  one-par t ic le  d i s t r i b u t i o n  f u n c t i o n  ( 1 )  i n t o  two p a r t s .  

(secondary) + f  (primary) f = f  
j j  j 

The k i n e t i c  equat ion  ( 4 )  with  t h e  r i g h t  hand s i d e  g iven  by ( 5 )  may thus  

be € a r m l l y  ariljdivicled for t he  j s p e c i e s  i n t o  equat ions  f o r  t h e  p r i m a r y  and 

secondary atom (or  molecule) popula t ions  

(I 

(I 
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a 

-where  t h e  secondary source  term may be w r i t t e n  i n  t h e  form 

a 

a 

a 

a 

e 

a 

a 

a 

a 

(primary) s =  
j 'jk f k .  9 

where C d e s c r i b e s  t h e  c r e a t i o n  r a t e  of secondary cloud atoms ( o r  molecules) 

of t h e  j s p e c i e s  from primary cloud atoms ( o r  molecules) of t h e  k species. 

The source  term (9.c) t h e r e f o r e  represents  t h e  secondary cloud atoms ( o r  mole- 

c u l e s )  produced by a l l  primary cloud atoms ( o r  molecules). More g e n e r a l l y ,  a 

sou rce  term similar t o  (9.c) may l ikewise  be in t roduced  i f  necessary t o  

i n c l u d e  t h i r d  gene ra t ion  extended source terms produced by d i s s o c i a t i o n  of 

secondary cloud molecules (e.g. SO + S + 0). 

t o , s e c o n d  g e n e r a t i o n  source  terms, t h e  d e s c r i p t i o n  of a n e u t r a l  cloud is  then  

ob ta ined  by f i r s t  s o l v i n g  (9.a) f o r  the p r o p e r t i e s  of t h e  primary cloud atom 

j k  

Limi t ing  t h e  present  development 

( o r  

and 

the 

molecule) popula t ion  

(lO.a) 

t hen  by secondly de te rmining  S 
secondary cloud atom (or  molecule) popula t ion  

and s o l v i n g  (9.b) f o r  t h e  p r o p e r t i e s  of 
j 

(secondary) L 

L 
S 

(lO.b) 

(secondary) + +  where f j (v s ,xS , tS )  = 0 by s e l e c t i n g  the  i n i t i a l  po tn t  of t h e  secondary cloud 

phase space t r a j e c t o r y  (v , t  ) a t  a p o i n t  on t h e  primary cloud phase space 

t r a j e c t o r y  where t h e  secondary cloud d i s t r i b u t i o n  o r i g i n a t e s  and is  hence z e r o  

by d e f i n i t i o n .  

+ +  
s s X s  s 

I n  t h i s  paper,  a gene ra l  model f o r  t h e  primary cloud atoms ( o r  molecules) 

is  e x p l i c i t l y  developed and w i l l  include express ions  t o  c a l c u l a t e  t h e  r e l e v a n t  

plasma i n p u t  rates supp l i ed  t o  t h e  plasma t o r u s  by the primary cloud. A model 

f o r  t h e  secondary cloud atoms ( o r  molecules) is  a l s o  g iven  but i s  more b r i e f l y  

ou t l ined .  For s i m p l i c i t y ,  t h e  genera l  model developed w i l l  adopt t h e  language 

a p p r o p r i a t e  t o  a gas  c loud  of atoms b u t ,  w i t h  s l i g h t  g e n e r a l i z a t i o n ,  w i l l  

e q u a l l y  w e l l  apply t o  a molecular gas cloud. For a gas cloud of atoms, t h e  

primary cloud popu la t ion  is much b r igh te r  than  t h e  secondary cloud popu la t ion  

a 



a 

i n  t h e  g e n e r a l  v i c i n i t y  of I o ‘ s  o r b i t ,  but t h e  secondary cloud popula t ion  

ex tends  throughout and beyond t h e  p l ane ta ry  magnetosphere and provides  a 

background dens i ty  and cloud b r igh tness  i n t o  which t h e  primary cloud 

popula t ion  merges. 

Phys ics  of an  Ensemble Packet 

A n e u t r a l  gas cloud of I o  may be desc r ibed  f o r  t he ’p r imary  atom popula- 

t i o n  d i scussed  above by following t h e  space-time h i s t o r y  of n e u t r a l  atoms 

e j e c t e d  from the s u r f a c e  of t h e  s a t e l l i t e  ( i n  low atmospheric d e n s i t y  l i m i t )  

o r  from t h e  exosphere of t he  s a t e l l i t e  ( i n  t h e  presence of a s u b s t a n t i a l  

atmosphere). Without l o s s  of g e n e r a l i t y ,  a s p h e r i c a l  exobase of r a d i u s  RE 

centered  on I o  is adopted. For a d i f f e r e n t i a l  s u r f a c e  area element 
I 

2 dQ ( = % s i n @  d@dQ) 

Q = (e,@), l e t  t h e  n e u t r a l  f l u x  (number of atoms e j e c t e d  per  u n i t  area, p e r  

u n i t  i n i t i a l  v e l o c i t y  i n t e r v a l ,  per u n i t  t i m e )  i n  t h e  i n i t i a l  v e l o c i t y  i n t e r -  
+ + + + A  

V a l  w t o  w + du and a t  t h e  abso lu te  t i m e  tb be denoted by $(w,Q,tb). 

a t  which t h e s e  atoms are e j e c t e d  from t h e  s u r f a c e  element i s  then  

of t h e  exobase centered  on t h e  angular  d i r e c t i o n  
CI 

The rate 

( l 1 . a )  

a 

(I 

4 

4 

I n  terms of the  one-par t ic le  d i s t r i b u t i o n  f u n c t i o n  of t h e  preceeding subsec- 

t i o n ,  t h e  f l u x  6 is  def ined  by 

(1 l .b )  

where t - (%, 8, @ )  i s  t h e  s p h e r i c a l  p o l a r  coord ina te  l o c a t i o n  of t h e  s u r f a c e  b- 
area element &. 

To describe t h e  n e u t r a l  cloud and i t s  impact on t h e  p l a n e t a r y  magneto- 

sphe re ,  i t  i s  s u f f i c i e n t  t o  follow i n  t i m e  an ensemble packet of atoms f o r  

each n e u t r a l  spec ies  i n i t i a l l y  e j e c t e d  i n  an a b s o l u t e  t i m e  i n t e r v a l  t b  t o  

tb + d t ’ ,  where t ’  is def ined  a t  t h e  f l i g h t  time s i n c e  t h e  packet w a s  i n i t i a l -  

l y  e j e c t e d  from t h e  exobase a t  t i m e  tb ’  

motion of a packet is depic ted  i n  F igure  1. A number of phys i ca l  q u a n t i t i e s  

w i l l  be def ined  f o r  t h e  packet i n  t h i s  s e c t i o n .  The complete d e s c r i p t i o n  of 

a n e u t r a l  cloud f o r  a p a r t i c u l a r  phys i ca l  q u a n t i t y  is obta ined  by i n t e g r a t i n g  

t h e  packet con t r ibu t ion  f o r  t h i s  q u a n t i t y  over  i t s  complete f l i g h t  t i m e  and 

For one such n e u t r a l  species, t h e  

4 

4 

4 



e 

over  a l l  i n i t i a l  exobase condi t ions .  To develop t h i s  d e s c r i p t i o n ,  t h e  

l o c a t i o n  of t h e  c e n t e r  of t he  packet a t  f l i g h t  t i m e  t '  may be denoted by 

r(t ' ,  (w',n) i n  a coord ina te  system .fixed . r e l a t i v e  t o  t h e  satel l i te .  

case of a sodium or potassium cloud, t h e  a d d i t i o n a l  f o r c e  of s o l a r  r a d i a t i o n  

A + I n  t h e  

p r e s s u r e  experienced by t h e  packet atoms as they  r e sonan t ly  scatter s u n l i g h t  

r e q u i r e s  a more complex s o l u t i o n  f o r  t h e  packet l o c a t i o n  (see Smyth 1979, 

1983) t h a t  depends i n  a d d i t i o n  on t h e  p r e s e n t  va lue  of t h e  a b s o l u t e  t i m e ,  

t b  + t ' ,  and hence must be denoted by f ( t ' , t b l Q , & ) .  Th i s  a b s o l u t e  t i m e  depen- 

dence is  in t roduced  because t h e  magnitude of t h e  s o l a r  r a d i a t i o n  f o r c e  is mod- 

u l a t e d  by t h e  doppler motion t h a t  occurs between t h e  sun  and t h e  packet atoms 

e i n  t h e  s a t e l l i t e  frame as I o  executes c i r c u l a r  motion about J u p i t e r  and as 

J u p i t e r  moves on i t s  e l l i p t i c a l  o r b i t  about t h e  sun. 

As a n  ensemble packet of atoms moves through the  circumplanetary space ,  

i t  may exper ience  i o n i z a t i o n ,  charge exchange, e x c i t a t i o n ,  and even e l a s t i c  

c o l l i s i o n s  because of i t s  i n t e r a c t i o n s  wi th  t h e  I o  plasma to rus .  Neutral-  

n e u t r a l  c o l l i s i o n s  are gene ra l ly  not  important (except f o r  r ecap tu re  near  Io 

and J u p i t e r  where they are e a s i l y  included) because the accumulated column 

d e n s i t y  determined by t h e  r e l a t i v e l y  s h o r t  l i f e t i m e  of cloud atoms is  small. 

E l e c t r o n  impac t  i o n i z a t i o n ,  photo ioniza t ion ,  and charge exchange r e a c t i o n s  

remove atoms from t h e  packet and hence determine i t s  decay l i f e t i m e .  

t i o n  p rocesses  a l s o  supply new ions  to  t h e  p l ane ta ry  magnetosphere. 

exchange processes  modify t h e  ion  composition and energy of t h e  I o  plasma 

t o r u s  and a l s o  provide a f l u x  of high-speed n e u t r a l s  t h a t  (un le s s  captured i n  

t h e  middle magnetosphere) escape from t h e  p l a n e t a r y  system. 

e x c i t a t i o n  processes  f o r  n e u t r a l  oxygen and s u l f u r  atoms provide  a photon 

emiss ion  mechanism f o r  t hese  two n e u t r a l  gas clouds. Elastic ion-neut ra l  

c o l l i s i o n s  a l t e r  t h e  t r a j e c t o r y  of atoms i n  t h e  packet and, i f  impor tan t ,  

r e q u i r e  t h a t  t h i s  momentum t r a n s f e r  information be p rope r ly  inco rpora t ed  i n  

de te rmining  "r(t',tbiw+,R) f o r  the secondary atom popula t ion  as descr ibed  i n  t h e  

prev ious  subsec t ion .  

Ioniza- 

Charge 

E lec t ron  impact 

A 

To d e s c r i b e  t h e  i n t e r a c t i o n s  of t h e  ensemble packet of atoms wi th  t h e  
+ 

plasma t o r u s ,  i t  is  necessary a t  a n  abso lu te  t i m e  t t o  map a l o c a t i o n  R i n  t h e  

s a t e l l i t e  f i x e d  coord ina te  system where t h e  packet l o c a t i o n  r ( t ' ,  tbliri, a) i s  

s p e c i f i e d  t o  a l o c a t i o n  R i n  the magnetic (or, more c o r r e c t l y  and g e n e r a l l y ,  

what s h a l l  be c a l l e d  t h e  plasma) coord ina te  frame where t h e  plasma p r o p e r t i e s  

are s p e c i f i e d .  The gene ra l  t ransformat ion  f o r  t h i s  mapping, which is a 

+ - F n  
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function of the absolute time t, will be denoted as follows: 

+ +  -+ 
N 

R = f(t) R + D7t) -. 
+. 

The tensor part of the transformation, T(t), includes the relative rotational 
motion and the tilt angle between the satellite coordinate frame and the 

plasma torus coordinate frame. 

includes the more complex mapping required between the satellite frame and the 
plasma frame for a dipole offset of the origin of the magnetic and planetary 
spin coordinate frames as well as for the additional shift of the center of 

the plasma torus produced by an east-west electric field such as proposed by 
Barbosa and Kivelson (1983) and Ip and Goertz (1983).  The location of a 

packet at flight time t' in the plasma coordinate system is then given as 
follows : 

The vector part of the transformation, 6(t) , 

I 

4 

4 

4 

-b 
The velocity of the packet ?(t',t,($,i) at flight time t' in the plasma 

coordinate system is then determined directly by time differentiation of (13 ) .  

In the remainder of this subsection, the ensemble packet contributions 
for a number of neutral cloud physical quantities of interest (e.g. density, 

photon emission rate, neutral l o s s  rate, and various plasma input rates to the 
magnetosphere) are formulated. To facilitate this formulation, a hat ' * A ' '  

notation is adopted to indicate that a physical quantity is described in 
- + - -  terms of its phase space representation (t',t ( w , Q )  along its phase space 

trajectory. Thus, for a general physical quantity Q ,  its ensemble packet 
contribution will be denoted by 0 = ?) (t',t Iz,fi). For an observer in 

a coordinate trame (r t ), the space/time description of the physical 
0' 0 

quantity Q(; t ) is then determined, as discussed in a later section, 
from a by evaluating its ensemble average <a>. 

b 

b + 

0' 0 

The number of atoms in an ensemble packet at flight time t' depend upon 

4 

the loss processes suffered by the packet since its beginning at time tb' 
-b -b 

For an ensemble packet at a location ? having a velocity 5 in the plasma 
coordinate frame, the lifetime of cloud atoms is denoted by ?(r,v). The 
velocity dependence is required in the lifetime to calculate properly the 

cloud atom charge exchange reaction rates with the plasma torus ions. The 

2 2  

4 
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0 

loss c o l l i s i o n  frequency f o r  t h e  packet i s  then  g iven  by 

and t h e  p r o b a b i l i t y  t h a t  t h e  ensemble packet of atoms a t  f l i g h t  t i m e  t '  e x i s t s  

i s  de f ined  as fo l lows:  

The number of atoms i n  t h e  packet a t  f l i g h t  t i m e  t '  is then g iven  by 

( t ' , t .b lG, i )  dsz & dt' 

where 
0 

a 

e 

i s  t h e  number of atoms per  u n i t  sur face  element dQ a t  the i n i t i a l  s u r f a c e  

l o c a t i o n  i, p e r  u n i t  i n i t i a l  v e l o c i t y  volume dZ a t  t h e  i n i t i a l  v e l o c i t y  8, and 

p e r  u n i t  time i n t e r v a l  d t '  a t  the f l i g h t  t i m e  t'. 

The number of photons emi t ted  by an  ensemble packet a t  f l i g h t  t i m e  t '  

depends upon i t s  photon e x c i t a t i o n  mechanism. The two important mechanisms, 

e l e c t r o n  impact e x c i t a t i o n  i n  t h e  plasma t o r u s  and s o l a r  resonance s c a t t e r i n g ,  

are desc r ibed  by an atom e x c i t a t i o n  r a t e  (i.e. photons p e r  atom pe r  u n i t  t ime) 

denoted by JA(?, vs) f o r  an emission l i n e  wi th  wavelength A. 

v e c t o r  '? of t h e  packet i n  t h e  plasma coord ina te  frame i s  requ i r ed  i n  

c a l c u l a t i n g  t h e  e lec t rom impact e x c i t a t i o n  ra te  f o r  oxygen and s u l f u r  atoms. 

The r a d i a l  speed vs of t h e  packet r e l a t i v e  t o  the sun is requ i r ed  i n  

c a l c u l a t i n g  t h e  s o l a r  resonance s c a t t e r i n g  e x c i t a t i o n  rate f o r  sodium, 

potasium, oxygen and s u l f u r .  The photon emission rate (i.e. number of photons 

emi t t ed  pe r  u n i t  t ime) a t  wavelength X f o r  the packet a t  f l i g h t  t i m e  t '  is 

-b 

The p o s i t i o n  
-+ 

where 

- 
I- 
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a 

The rate a t  whichzneutr81 atoms are l o s t  from t h e  packet a t  f l i g h t  t i m e  

t '  is determined from t h e  t i m e  d e r i v a t i v e  of ( 1 7 )  and i s  given by 

which may be w r i t t e n  i n  terms of a loss ra te  

a 

where 

A 

Loss processes  c o n t r i b u t i n g  t o  t h e  c o l l i s i o n  frequency v i n  (22) occur f o r  t h e  

f i r s t  f o u r  types of n e u t r a l  r e a c t i o n s  summarized i n  Table 3 ,  where t h e  n e u t r a l  

cloud atoms a r e  denoted by t h e  g e n e r a l  chemical symbol Y. (It should be noted 

i n  pass ing  t h a t  t o  g e n e r a l i z e  t h e  c o l l i s i o n  frequency v f o r  molecular gas  

c louds ,  d i s s o c i a t i v e  r e a c t i o n s  would from t h i s  po in t  forward have t o  be 

proper ly  included.) 

however, t h e  net ra te  a t  which i o n s  are depos i t ed  i n t o  t h e  magnetosphere by 

t h e  packet ,  s ince  charge exchange r e a c t i o n s  of type  C i n  Table 3 ,  whi le  

provid ing  from t h e  packet a new i o n  (Y ), simultaneously remove an  o l d  i o n  

(X') from t h e  magnetosphere by product ion  of a f a s t  escaping n e u t r a l .  

A 

It should be emphasized t h a t  t h e  express ion  (21) i s  not, 

+ 

i n  gene ra i ,  t o  determine the  impacL of the  n e u t r a l  cloud on t h e  

magnetosphere it i s  necessary t o  s imul taneous ly  assess t h e  c o n t r i b u t i o n s  of 

t h e  packets of several n e u t r a l  clouds on t h e  plasma t o r u s  because of r e a c t i o n s  

of type  C i n  Table 3. It is  of i n t e r e s t  t o  determine t h e s e  c o n t r i b u t i o n s  not  

only f o r  t h e  net i o n  loading rate but a l s o  f o r  t h e  plasma mass loading  rate 

h, and f o r  t h e  i o n  energy inpu t  rate E. 
species ( j = 1 , 2 ,  ..., N), t h e  in s t an taneous  packet con t r ibu t ions  t o  any one of 

t h e s e  t h r e e  input rates can be formulated (see Smyth and Shemansky 1983) and 

w i l l  be denoted by i ( t ' , t b ( i i , f i ) ,  where 

For a mixture of N n e u t r a l  gas  

A 
A 

4 

4 
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e 

0 

a 
, 

e 

a 

n 

Here L .  i s  t h e  l o s s  ra te  of t h e  packet f o r  t h e  j-species def ined  i n  a p a r a l l e l  

rnanne-r t o  (221, and ^P. is t h e  production rate of t h e  packet f o r  t h e  j - spec ie s  

as determined from t h e  r e a c t i o n s  of type C i n  Table 3. For t h e  t h r e e  cases of 

i n t e r e s t ,  

between t h e  n e u t r a l  atom Y and t h e  plasma coord ina te  frame a t  t h e  t i m e  t h e  

n e u t r a l  i s  l o s t  from t h e  packet ,  and VT is t h e  thermal energy of the X+ i o n  a t  

t h e  t i m e  i t  is converted t o  a f a s t  n e u t r a l  because of r e a c t i o n s  of t ype  C i n  

Table 3 .  

J 

J 

A n 

and q are def ined  i n  Table 4 ,  where VR is the r e l a t i v e  v e l o c i t y  % j 

Combining t h e  i o n i z a t i o n  r eac t ions  A and B i n  Table 3 i n t o  a s i n g l e  term, 
A 

t h e  c o l l i s i o n  frequency v j ( t ' , t b lG , i )  f o r  t h e  j s p e c i e s  may be d iv ided  i n t o  a 

c o n t r i b u t i o n  from i o n i z a t i o n  (I), charge exchange (CE), and charge t r a n s f e r  

(CT) as fo l lows:  

The charge exchange c o l l i s i o n  frequency may be f u r t h e r  d iv ided  i n t o  terms 

t h a t  d e s c r i b e  t h e  i n d i v i d u a l  charge exchange r eac t ions .  

ra te  f o r  t h e  j-species n e u t r a l  packet because of t h e  charge exchange r e a c t i o n  

t h a t  produces a f a s t  k-species n e u t r a l  ( i .e.  i t  is  t h e  product of t h e  i o n  

d e n s i t y  f o r  t h e  ion ized  k-species times t h e  r e a c t i o n  ra te  cons tan t  f o r  t h e  

charge exchange r e a c t i o n ) .  Symmetric charge exchange (k=j) and nonsyametric 

charge exchange ( k + j )  are included. The production rate P . ( t ' ,  t b l u ,  Q )  f o r  

a l l  f a s t  n e u t r a l s  of t h e  j s p e c i e s  tha t  are produced by a l l  n e u t r a l  packe ts  is 

then g iven  by 

Here ?k) is  t h e  l o s s  
j 

+ A  A 

J 
- 

A(j )A  
A N 

P = C  j k-1 'k "k 

s o  t h a t  t h e  express ion  ( 2 3 )  may be r e w r i t t e n  as t h e  s u a  of two d i f f e r e n t  terms 

*- 17 
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The con t r ibu t ion  of t h e  charge exchange r e a c t i o n s  t o  (27)  is  g iven  by the  

second term. This second term is  ze ro  f o r  '13, nonzero f o r  fi because of t h e  

nonsymmetric r eac t ions ,  and nonzero f o r  because of every  charge exchange 

r eac t ion .  

A A 

A 

n 

I n  t h e  case of k, t he  number of n e u t r a l s  l o s t  from t h e  j - spec ies  packet ,  
A 

A . 
Li, i s  d iv ided  between t h e  n e t  i o n  loading  ra te ,  Ni, and t h e  production of new 

J 

A(CE)̂ , f a s t  n e u t r a l s ,  v t h a t  escape from t h e  syste;  because of r e a c t i o n s  of 
j j' 

t ype  C ( T a b l e  3): 

A 
A 

A (CE)^ 
L = B .  + v  n 
j~ j j  

A 
A 

as expected on phys ica l  grounds. 

i s  t i m e  dependent because of t h e  o s c i l l a t i o n  of t h e  plasma t o r u s  about t h e  

s a t e l l i t e  plane and o the r  more complex motions t h a t  are contained i n  t h e  

t r ans fo rma t ion  (13). 

coupled as described by (27). 

r e f l e c t e d  i n  (23),  where t h e  f i r s t  term i s  t h e  c o n t r i b u t i o n  t o  t h e  plasma 

t o r u s  by t h e  n e u t r a l s  l o s t  from t h e  packets ,  and t h e  second term is  t h e  

c o n t r i b u t i o n  produced by new n e u t r a l s  being c rea t ed  by t h e  packet-plasma 

r e a c t i o n s  of t y p e  C i n  Table 3. 

The f r a c t i o n  of L t h a t  c o n t r i b u t e s  t o  i j  
j 

A A 

For $ and k ,  t h e  s e p a r a t e  j - spec ie s  con t r ibu t ions  are 

The o v e r a l l  mass and energy conserva t ion  i s  

n 

The cumulative va lue  of t h e  in s t an taneous  rate supp l i ed  t o  t h e  plasma 

t o r u s  i n  a time per iod  T by a l l  of t h e  n e u t r a l  s p e c i e s  packe t s ,  each of which 

has  a c u r r e n t  f l i g h t  t i m e  t ' ,  may a l s o  equa l ly  w e l l  be formulated. For t h e  

a b s o l u t e  t i m e  i n t e r v a l  from to-T t o  to, t h i s  cumulative va lue  is given by 

t '  A 

[JtL k (t", t O - t ' l z , i )  dt"] dQ d z  d t '  

where 

A 

The q u a n t i t y  (29) is u s e f u l  i n  t h a t ,  even though t h e  ins tan taneous  rate 

i n t e g r a t e d  over a l l  f l i g h t  t i m e  is t i m e  dependent, i t s  cumulative va lue  (29) 

averaged o v e r a l l  f l i g h t  t i m e  t '  is  not  t i m e  dependent, if t h e  source  and s i n k  

- 
t- 
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a 

e 

processes for the neutral cloud are periodic with the period T. This will be 
discussed further in a later section. It should be noted here in passing, 
however, that in addition to the instantaneous contribution (27) or the 
cumulative contributions (29 )  of the neutral packets to A ,  A and I?, the plasma 

torus may also contribute directly through reactions of type E, F and G in 
Table 3 .  These additional processes are not in the realm of the neutral cloud 

A A  c 

description and may be treated independently. 

Physics of an Ensemble Subpacket 
A neutral gas cloud of I o  may be described for the secondary atom 

population by following the space-time history of all neutral atoms produced 

by the primary atom population. To accomplish this explicitly, the secondary 

atom population will be described in terms of an ensemble subpacket in an 
analogous way that the primary atom population is described in terms of an 

ensemble packet. 

illustrated in Figure 2. 

number of atoms created with initial velocity 6 to c+dc along the primary 
packet trajectory :(t',t I.',;) in the time interval t' to t'+dt' is given by 

The relationship between the packet and subpacket are 

For a neutral gas subpacket of the jth species, the 
+ + +  

b 

where 

e 

+ - P A  Here, gj (6  Iw,Q ,t',t ) is the local initial velocity distribution for all 

secondary atoms created at time t' along this packet trajectory and is 

normalized to unity 

b 

A 

and P is given by (26) for the case of charge exchange 

secondary iieutrals. For a secondary popuiation created 
j 

(33) 

creation of fast 

by elastic ion-atom o r  
A 

dissociative electron-molecule collisions, the expression for P must be 

appropriately generalized. The creation rate (32) in the subpacket formalism 

occupies a parallel position to the flux (1l.b) in the packet formalism. 

j 

0 

- 
a 
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a 

The location of the center of the subpacket, originally created at 
a flight time t"=O with an initial velocity at the primary location 

r(t',t Iu,n) and corresponding to the primary trajectory time tb+t', will be 
denoted for t">O - by Y(t",.$; t',tbl$,i) . 
location of the subpacket at a flight time t" is therefore given by 

+ 
b -P 

In the plasma coordinate system, the 

in an exactly parallel manner to the packet location (13 ) .  The velocity 
of the subpacket in the plasma coordinate system will be denoted by 

v(t",i; t',tb(w,i) and is determined by the t" time derivative of (34 ) .  
+ 
N 

The ensemble subpacket contributions for different neutral cloud physical 

quantities of interest can be formulated as in the previous section for the 
packet ensemble. To facilitate this formulation, a double hat ' ' 2"  notation is 
adopted to indicate that a physical subpacket quantity is described in terms 

of its phase space representation (t",c; t',t Iu,n) along its phase space 
trajectory. 
is given by 

+ + A  

b 
The loss collision frequency for the subpacket of the jth species 

parallel to the packet expression (14 )  and the probability that the ensemble 

subpacket of atoms at flight time t" exist is defined by 

The number of atoms in the subpacket of the jth species at time t" is then 

given by 

%.(t",c; + t',tbli,i) dn d dt' di dt" 
J 

where 

(37)  

In a similar manner to the packet quantities defined in the prev XIS section, 

the subpacket photon emission-rate density fx(t",E; t',tb(a,Q), the loss 
A + j n  

- 
P -  
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rate d e n s i t y  
A b 

b 

(t",i; t ' , t  I.',;), and the  plasma inpu t  rate d e n s i t i e s  

- i  (t",;; t ' , t  I;,;) may be def ined  paral le l  t o  t h e  express ions  (18), ( 2 1 )  and 

e (27), r e s p e c t i v e l y .  

K i n e t i c  Theory D i s t r i b u t i o n  Function 

The k i n e t i c  t heo ry  d i s t r i b u t i o n  f u n c t i o n  f o r  t h e  n e u t r a l  gas cloud of t h e  

jth s p e c i e s  as noted earlier may be d iv ided  i n t o  a c o n t r i b u t i o n  from t h e  

primary and secondary atom populations 

(primary) (secondary) 

+ + Here, v 

obse rva t ion  coord ina te  frame, and to is t h e  a b s o l u t e  t i m e  i n  t h e  obse rva t ion  

frame. The primary and secondary con t r ibu t ions  t o  (39)  can be d i r e c t l y  

expressed ,  r e s p e c t i v e l y ,  i n  terms of t h e  primary packet d e n s i t y  6 and t h e  

secondary subpacket d e n s i t y  ;I defined i n  t h e  prev ious  two s e c t i o n s :  

and x are t h e  v e l o c i t y  and s p a t i a l i c o o r d i n a t e s  of phase space  f o r  an  
0 0 

A 

(primary 1 * 

exobase v e l o c i t y  f l i g h t  
space time 

A 
A 

t 
(secondary) 

f.(% ,: ,t ) = a / & I d t '  d t"  $ ( t " , t ;  t',tO-t'lo,n>s(=o,;j)s(~o,rj) + A  . 
( 4 1 )  exobase velocity f l i gh t  velocity f l i g h t  

space time space t i m e  
A 

A 

? In  ( 4 0 )  and ( 4 1 ) ,  $ and r are abbrevia ted  n o t a t i o n s  f o r  t h e  ensemble 

packet s p a t i a l  l o c a t i o n  and v e l o c i t y  

A A 
A 

-k * and 'r and E are abbrev ia t ed  n o t a t i o n s  f o r  the ensemble subpacket l o c a t i o n  and 

v e l o c i t y  

t The q u a n t i t i e s  6 (5 ,$. ) -and 6(G0,rj), r e s p e c t i v e l y ,  are t h e  s p a t i a l  volume O J  

21 



projection operator and the velocity volume projection operator defined as 
- follows: 

+ 
+ +  if ro < !o < ro+-Azo 

6(r0,r) = 7j-- 
A ro 1 otherwise 

( 4 4 )  

Here "R is the location of the ensemble packet (or subpacket) in the 
0 

observation coordinate frame defined and mapped by an appropriately defined 

transformation of the form 

+ 

0 0  
r 

S o = T ( t  0 0  ) *  

(I 

t and 3, = Ro is the velocity of the ensemble packet (or subpacket) in the 

observation coordinate frame. In addition, the quantities A3r and A3v are, 0 0 
respectively, the spatial and velocity volume elements establishing the volume 
resolution element in the phase space of the observation coordinate system and 

correspond to the spatial volume AZO about ro and the velocity volume ACo 
about vo. 

+ 

+ 

Spatial Properties of the Neutral Cloud 

The spatial properties of the neutral cloud (e-g., the three-dimensional 

number density or the two-dimensional brightness of the cloud on the sky 
plane) as well as the physical ion input rates to the planetary magnetosphere 

can be determined directly from the kinetic theory distribution function (39 )  

or alternatively from the expressions derived from the ensemble packet and 
subpacket in the previous sections. In the former case, one multiplies the 

4 

I 

4 

(I 

distribution function by a physical quantity of interest, which may in general 
be a function of (r ,v t ), and integrates the product over the velocity 

coordinate space v In the latter case, one defines an ensemble average for 
the packet and subpacket physical quantity of interest, producing an identical 

+ +  
+ 0 0' 0 4 

0 -  
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r e s u l t  t o  t h e  former method because o f  t h e  n a t u r e  of t h e  s p a t i a l  and v e l o c i t y  

-vplume p r o j e c t i o n  o p e r a t o r s  (44)  and ( 4 5 ) .  The ensemble average approach w i l l  

be e x p l i c i t l y  developed below and i s  t h e  d e s c r i p t i o n  adopted f o r  t h e  numerical  

e v a l u a t i o n  of t h e  n e u t r a l  cloud model d i scussed  i n  the next s e c t i o n .  

+ I .  

A 
A A  

I f  an ensemble p2cket q u a n t i t y  (e.g., n ,  IA,  k )  and i t s  subpacket 

+ - F A  

+ A  
A A  A 

q u a n t i t y  (e.g., :,?A , k )  are denoted r e s p e c t i v e l y  as G(t ' , tblo,Q) and 

a( t " ,E ; t ' , tb lo ,Q ) , and i f  t h e  corresponding ensemble averaged p h y s i c a l  

q u a n t i t y  i n  t h e  o b s e r v e r ' s  coord ina te  frame a t  

i s  denoted by Q($o,tO), then  

A 

and a t  an a b s o l u t e  t i m e  to 
0 

a 

e 

a 

e 

A A 

Q(%o,to> = <Q> + <;> 

where 

A 
A 

<Q> = dn I d =  d t  ; ( t l ,  to-t ' Iz,n)6(Po,:) 
exobase v e l o c i t y  f l i g h t  

space time 

( 4 7 )  

A 
A 

<\> = J dn I & d t '  1 cL$ I dt"  &t'*,t; t',to-t'I&fi)6(:o,i) ( 4 9 )  
exobase velocity f l i g h t  velocity f l i g h t  

space time t i m e  space 

A 
A A 

where 3 and $ are g iven  by ( 4 2 )  and (43) and where the  volume p r o j e c t i o n  

o p e r a t o r  6 ( r  , r)  is  de f ined  by (44). To p r o j e c t  an ensemble average phys ica l  

q u a n t i t y  Q(; 

t h e  gas  d e n s i t y  t o  o b t a i n  a column dens i ty  o r  f o r  t h e  volume photon emission 

rates t o  o b t a i n  an image of t h e  cloud b r igh tness ,  an  i n t e g r a t i o n  a long  t h e  

l i n e  of s i g h t  i n  t h e  obse rve r ' s  coord ina te  frame is requ i r ed  i n  a d d i t i o n  t o  

those  s p e c i f i e d  i n  (48) and (49).  

zo-axis a long  t h e  l i n e  of s i g h t ,  t he  column i n t e g r a t e d  q u a n t i t y  is  g iven  by 

+ +  
0 

0' 0 t ) on to  t h e  obse rve r ' s  viewing p lane ,  as i s  a p p r o p r i a t e  f o r  

For  t h e  simple case of no p a r a l l a x  wi th  t h e  

I n  t h i s  manner, t h e  b a s i c  p r o p e r t i e s  of t h e  cloud and a l s o  i t s  i n t e r a c t i o n s  

wi th  t h e  magnetosphere may be ca lcu la ted .  

23 



It should be noted that if the ensemble packet quantity and the packet 
trajectory are periodic with period T in their initial ejection time tb, 
that is, if 1) 

it then follows that the corresponding ensemble average physical quantities of 

the neutral cloud (47), although time dependent in general, are also periodic 
with the period T 

b 

In general, the ensemble averaged value of the cumulative value [see (29) and 

(30)] of any packet quantity Q integrated over a time to-T to to 
A 

is exactly equal to the ensemble average value of the instantaneous packet 

quantity Q integrated over the time interval 
A 

c 

ILo <^s> dtOt 
t O-T 

as can be readily verified, A similar result also holds for the subpacket 

quantity. If (51) holds, the quantities (53) or (54) are also explicitly 

independent of the time to, as would, of course, be expected purely on 

physical grounds. For Q = L, this time-independence is clearly illustrated 
in the simple case of a constant f l u x  

A A  

( 5 4 )  

by the obvious result 

(I 

tO+T A I d+'o lto <L> dtO' = T I dQ I d$ O<$,i> 
exobase velocity space all space 

developed directly from (20) and (48)- 
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The g e n e r a l  p e r i o d i c  r e l a t i o n s h i p  (52) and t h e  e q u a l i t y  OT (53) and (54) 
are u s e f u l  i n  s tudying  the  impact of t h e  n e u t r a l  clouds on t h e  magnetosphere. 

A per iod  T of approximately 13 hours e x i s t s  between I o  and i t s - l o c a t i o n  i n  t h e  

o s c i l l a t i n g / r o t a t i n g  magnetosphere i f  east-west t o r u s  d i f f e r e n c e s  are assumed 

small or zero. I f  on t h e  o t h e r  hand, east-west t o r u s  d i f f e r e n c e s  cannot be 

ignored ,  a per iod  T of approximately 32 days e x i s t s  f o r  recur rence  of t h e  same 

east-west p o s i t i o n  and System 111 magnetic longi tude  of Io. To i l l u s t r a t e  t h e  

impact of t h e  t h e  n e u t r a l  c louds ,  the  packet  express ion  (28) is summed over 

t h e  va r ious  n e u t r a l  cloud species and i t s  ensemble average i s  taken t o  o b t a i n  

Th i s  expres s ion  d i v i d e s  the ins tan taneous  t o t a l  packet n e u t r a l  l o s s  rate 

of t h e  cloud <L> i n t o  i t s  ins tan taneous  n e t  i o n  loading  rate f o r  t h e  

magnetosphere <i> and i t s  ins tan taneous  product ion  rate of f a s t  n e u t r a l s  

< z j v j  J 

This  p a r t i t i o n i n g  i s  t i m e  as w e l l  as s p a t i a l l y  dependent. 

The l a t te r  term of (57) is, of course, t h e  rate a t  which subpacket f a s t  

n e u t r a l s  are produced. 

averaged va lue  of each term i n  (57)  is independent of t i m e ,  s o  t h a t  t h e  

average  f r a c t i o n s  of n e u t r a l s  c o n t r i b u t i n g  t o  t h e  ne t  i o n  loading rate and t o  

t h e  product ion  of f a s t  n e u t r a l s  a r e  given, r e s p e c t i v e l y ,  by 

A 

A 

I f  the packet p e r i o d i c i t y  (51) holds ,  t h e  pe r iod  

a 

and 

* 

9 

e 

where t h e  b racke t s  "<>" denote t h e  packet ensemble average  and t h e  ba r  

i n d i c a t e s  p e r i o d i c  accumulation, t h a t  is 

and where by c o n s t r u c t i o n  



4. Numerical Approach 

The ensemble average of a packet and subpacket q u a n t i t y g i v e n  by 

(47) - (49) and its column i n t e g r a t e d  va lue  g iven  by (50) may be eva lua ted  

numerically.  For  t h e  packet d e s c r i p t i o n ,  t h i s  is  accpmplished by d i v i d i n g  

t h e  exobase i n t o  many small area elements. On each area element, t h e  

i n i t i a l  v e l o c i t y  d i s t r i b u t i o n  as w e l l  as t h e  a b s o l u t e  f l u x  are  s p e c i f i e d  

' independently,  For each i n i t i a l  cond i t ion  s p e c i f i e d  on an area element,  a 
+ - F A  

t r a j e c t o r y  r ( t ' , t  Iu,Q) f o r  an  ensemble packet is c a l c u l a t e d  f o r  s u f f i c i e n t l y  

long f l i g h t  time t '  t o  determine accu ra t e ly  t h e  cloud p r o p e r t i e s .  Along each 

t r a j e c t o r y ,  t h e  packet q u a n t i t i e s  Q of i n t e r e s t  are c a l c u l a t e d  and accumulated 

i n  t h e i r  appropr i a t e  s p a t i a l  volume ( o r  a r e a  of t h e  sky p l ane )  i n  such a way 

t o  determine the packet  ensemble average ( 4 8 )  o r  i t s  c o n t r i b u t i o n  t o  t h e  

column-integrated ensemble average (50).  For t h e  subpacket d e s c r i p t i o n ,  t h e  

source  d e n s i t y  ra te  ^s f o r  t h e  subpacket as def ined  by (31) i s  c a l c u l a t e d  i n  

t h e  packet d e s c r i p t i o n  along t h e  packet t r a j e c t o r y  and has  t h e  analogous 

r o l e  t h a t  t h e  f l u x  ( l l a )  has i n  t h e  packet desc r ip t ion .  The source  d e n s i t y  

r a t e  ŝ is numerically d iv ided  i n t o  many s m a l l  packet f l i g h t  t i m e  increments 

along t h e  packet t r a j e c t o r y  and from each increment t h e  subpacket t r a j e c t o r i e s  
+ - F A  r(t", t ;  t ' , t  Iu,n) are c a l c u l a t e d  f o r  s u f f i c i e n t l y  long f l i g h t  time t" t o  

determine accu ra t e ly  t h e  cloud p rope r t i e s .  Along each t r a j e c t o r y ,  t h e  

subpacket q u a n t i t i e s  6 of i n t e r e s t  are c a l c u l a t e d  and accumulated i n  t h e  

a p p r o p r i a t e  s p a t i a l  volume element of t h e  observa t ion  coord ina te  frame. 

b 

A 

b 

h 

-F + "  
The packet t r a j e c t o r i e s  r ( t  ' , t  Iu,Q) and subpacket t r a j e c t o r i e s  

A b + 
r ( t " , t ;  t ' , t  Iz,Q) may be determined by so lv ing  t h e  s t anda rd  (Snyth and 

McElroy 1977) or modified (Smyth 1983) c i r c u l a r - r e s t r i c t e d  three-body 

equat ions  of motion f o r  each p resc r ibed  i n i t i a l  condi t ion .  The modified 

equat ions  are requi red  f o r  t h e  sodium and potassium cloud because of t h e  

a d d i t i o n a l  e f f e c t s  of s o l a r  r a d i a t i o n  p res su re  (Smyth 1479, 1983) on t h e s e  

atoms. The equat ions  of motion are so lved  numerically by apply ing  a s t r a i g h t -  

forward Runge K u t t a  technique. The t i m e  s t e p s  employed i n  t h e  numerical  

s o l u t i o n  must be s e l e c t e d  small enough not  on ly  t o  determine an a c c u r a t e  

t r a j e c t o r y  but  also t o  i n s u r e  t h a t  t he  space and t i m e  r e s o l u t i o n  of 

t h e  ensemble average q u a n t i t i e s  (471, which are q u i t e  s e n s i t i v e  t o  t h e  

oscillational/rotational motion of t h e  plasma t o r u s ,  are c a l c u l a t e d  t o  t h e  

l e v e l  of des i r ed  accuracy. 

b 

a 

a 
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0 

A 

For a p a r t i c u l a r  n e u t r a l  cloud, c a l c u l a t i o n  of t h e  packet q u a n t i t y  Q ,  
A 

t h e  subpacket q u a n t i t y  a and t h e i r  ensemble averages (48) and (49) r e q u i r e s  

f i r s t l y  t h a t  t h e  r e l evan t  r e a c t i o n s  and t h e i r  rates (symbolically i n d i c a t e d  by 

A-E i n  Table 3)  and a l s o  t h e  e x c i t a t i o n  rates (18) be i d e n t i f i e d  and de f ined ,  

and secondly t h a t  t h e  space/t ime p r o p e r t i e s  of t h e  plasma t o r u s  be s p e c i f i e d  

a long  t h e  packet and subpacket t r a j e c t o r i e s .  For the  sodium cloud, t h i s  

in format ion  is presented  i n  t h e  companion paper (Smyth and Combi 1986) i n  t h i s  

i s s u e .  

e 
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5. summary 

A b r i e f  r e v i e w  of Io's l o c a l  atmosphere and i t s  extended gas  c louds  as 

w e l l  as t h e i r  i n t e r a c t i o n s  wi th  t h e  p l ane ta ry  magnetosphere w a s  g iven  i n  

s e c t i o n  2. 

understanding the coupled planet-satell i te-magnetosphere system. Analysis of 

earth-based, rocke t ,  o r  ea r th -o rb i t i ng  s a t e l l i t e  observa t ions  of n e u t r a l  cloud 

emissions provides a d i r e c t ,  very promising, and s t i l l  l a r g e l y  untapped 

approach f o r  i nc reas ing  our  knowlege and understanding of complex phys ica l  

phenomena i n  the system. 

e s s e n t i a l  i n  t h i s  ana lys i s .  These models must inc lude  t h e  complex space-time 

i n t e r a c t i o n s  tha t  occur between the  n e u t r a l  clouds and t h e  plasma t o r u s  which 

have h i t h e r t o  not been incorporated.  The gene ra l  I o  n e u t r a l  cloud model 

developed h e r e  inc ludes  these  i n t e r a c t i o n s  and provides a g e n e r a l  and s o l i d  

base f o r  f u t u r e  a n a l y s i s  of cloud da ta .  

The I o  n e u t r a l  clouds were seen  t o  occupy a c e n t r a l  p o s i t i o n  i n  

Phys ica l  r e a l i s t i c  models f o r  t h e  n e u t r a l  clouds are 

A mathematical d e s c r i p t i o n  f o r  t h e  gene ra l  n e u t r a l  cloud model w a s  

p resented  f o r  I o  i n  s e c t i o n  3.  For a given n e u t r a l  gas species,  t h e  

d e s c r i p t i o n  i s  d iv ided  i n t o  a primary cloud popula t ion  t h a t  i s  i n i t i a l l y  

e j e c t e d  from the s a t e l l i t e  exobase and a secondary cloud popula t ion  t h a t  i s  

c r e a t e d  i n  a s p a t i a l l y  extended volume by t h e  primary cloud popula t ion  through 

va r ious  time-dependent processes.  For s i m p l i c i t y ,  t h e  mathematical desc r ip -  

t i o n  f o r  t h e  primary and secondary gas popula t ions  are e x p l i c i t l y  developed 

f o r  an  atomic cloud, although they may be r e a d i l y  gene ra l i zed  f o r  a molecular 

cloud. The d e s c r i p t i o n  of t h e  primary gas cloud may be fundamentally reduced 

t o  d e s c r i b i n g  the  t i m e  evo lu t ion  of an ensemble packet of gas  a long  i ts  phase 

space t r a j e c t o r y .  The d e s c r i p t i o n  of t h e  secondary gas  cloud may l i k e w i s e  be 

reduced t o  desc r ib ing  t h e  t i m e  evo lu t ion  of an  ensemble subpacket a long  i ts  

phase space  t r a j e c t o r y .  The phys ics  of an ensemble packet and ensemble 

subpacket ate presented and are alscr d i r e c t l y  r e l a t e d  t o  t h e  k i n e t i c  t heo ry  

d i s t r i b u t i o n  func t ion  f o r  t h e  gas  cloud. The s p a t i a l  p r o p e r t i e s  of t h e  

n e u t r a l  cloud as w e l l  a s  var ious  ion  input  rates t o  t h e  p l a n e t a r y  magneto- 

sphere  are obtained from t h e i r  ensemble packet and subpacket va lues  by 

e v a l u a t i n g  t h e i r  ensemble averages.  A s t r a igh t fo rward  numerical approach f o r  

e v a l u a t i n g  t h e  model i s  o u t l i n e d  wi th  appropr i a t e  r e fe rences  t h a t  d e f i n e  and 

p resen t  a method of s o l u t i o n  f o r  t h e  equat ions  of motion of t h e  phase space 

t r a j e c t o r i e s  fo r  t h e  ensemble packet and subpacket. 
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A s  noted e a r l i e r ,  the general  model i s  applied to  the Io sodium cloud i n  

a companion paper (Smyth and Combi i986) i n  t h i s  i s s u e .  The appl i ca t ion  of 

the  general  model t o  other neutral  gas c louds of Io ( e . g . ,  K ,  0 ,  S ,  SO2, e t c . )  

w i l l  be considered i n  a series of future papers. 
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Table 2 

Some Studies for Exospheric Problems in Planetary Science I 

Sub jec t  Reference  

1. Cometary Atmospheres Eddington 1910; Haser 1957, 1966; Keller 
1973; Keller and Thomas 1975; Keller and 
Meier 1976; Combi and D e l s e m m e  1980; Combi 
1980; Fes tou  1981a,b; Combi and Smyth 1985; 
Combi, S t ewar t  and Smyth 1986 

2. P l a n e t a r y  Atmospheres 

0 Mercury 

0 Venus 

8 E a r t h  

3. S a t e l l i t e  Atmospheres 

0 Moon 

e T i t a n  

0 Io 

Hartle 1971; Hartle, O g i l v i e  and Wu 1973; 
Hodges 1974; Hartle, C u r t i s  and Thomas 1975; 
Smith e t  a l .  1978; C u r t i s  and Hartle 1978; 
Hodges 1980; I p  1986; Smyth 1986 

Penner 1977; Hodges and T i n s l e y  1981, 1982; 
Rodriguez,  P r a t h e r  and McElroy 1984; Hodges 
and T i n s l e y  1986 

Chamberlain 1963; Hartle 1973; Bertaux and 
Blamont 1973; Fahr and Paul  1976; Penner 
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Rodriguez 1983; Bishop 1985 

4 

1 
Hodges 1973; Hartle and Thomas 1974; Hodges 
1980 

Fang, Smyth and McElroy 1976; Smyth and 
McElroy 1977; Smyth 1981; Shemansky, Smith, 
Smyth and Combi 1984; H i l t o n  and Hunten 
1985; I p  1985 
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1977, 1978; Matson e t  a l .  1978; Car l son  e t  
a l .  1978; Smyth 1979; Goldberg e t  a l .  1980; 
Macy and T r a f t o n  1980; Smyth 1983; Sieveka 
1983; P i l c h e r  e t  a l .  1984; Smyth and Combi 
1983, 1984, 1985; Sieveka and Johnson 1985; 
McGrath and Johnson 1986 

I 

32 
c 



e 

0 

e 

e 

Table 3 

C l a s s i f  L c a t i o q  of React%ns Involving Neutral Species 

Neutral-Solar Reactions: 

A. Ionizatjon 

Neutral-Plasma Reactions: 

B .  Ionization 

C. Charge Exchange 

D. Forward Charge Transfer 

Plasma-Plasma Reactions : 

E. Recombination 

F. Reverse Charge Transfer 

G.  D i s soc ia t ive  Recombination 

Y + h v  .+ Y + + e  

Y +  e + @ + 2 e  

y + x +  .+ y + + x  

Y + F +  Y + + x +  

Y + + e  .+ Y 

Y+ + x+ -+ Y + x++ 
X Y + + ~  .+ X + Y  
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Table 4 

L, 

j Definition of the Parameters 5 and n j 

A 

A 

i 

A 

1 

m 
j 

mj 2 
2 'R 
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FIGURE CAPTIONS 

Figure i. Motion of a Neutral Cloud Packet. The mathematical description 

for the primary population of the neutral cloud based upon the 

dynamic evolution of neutral cloud packets is depicted. The one 

neutral cloud packet shown on its trajectory at a flight time t'>O 
is ejected from a satellite exosphere area element dQ with a 

velocity w at flight time t'=O. + 

a 

Figure 2. Motion of a Neutral Cloud Subpacket. The mathematical description 
of the secondary population of the neutral cloud based upon the 

dynamic evolution of neutral cloud subpackets is depicted. The 
one neutral cloud subpacket shown on its trajectory at flight time 

t">O is ejected at flight time t"=O with initial velocity 5 from 

the neutral packet. The location of the neutral packet at the 

later time ( t " > O )  is also indicated. 
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